scholarly journals Weak compactness of integration maps associated with indefinite integrals of spectral measures

1995 ◽  
Vol 6 (4) ◽  
pp. 495-503
Author(s):  
W.J. Ricker
Author(s):  
Constanze Liaw ◽  
Sergei Treil ◽  
Alexander Volberg

Abstract The classical Aronszajn–Donoghue theorem states that for a rank-one perturbation of a self-adjoint operator (by a cyclic vector) the singular parts of the spectral measures of the original and perturbed operators are mutually singular. As simple direct sum type examples show, this result does not hold for finite rank perturbations. However, the set of exceptional perturbations is pretty small. Namely, for a family of rank $d$ perturbations $A_{\boldsymbol{\alpha }}:= A + {\textbf{B}} {\boldsymbol{\alpha }} {\textbf{B}}^*$, ${\textbf{B}}:{\mathbb C}^d\to{{\mathcal{H}}}$, with ${\operatorname{Ran}}{\textbf{B}}$ being cyclic for $A$, parametrized by $d\times d$ Hermitian matrices ${\boldsymbol{\alpha }}$, the singular parts of the spectral measures of $A$ and $A_{\boldsymbol{\alpha }}$ are mutually singular for all ${\boldsymbol{\alpha }}$ except for a small exceptional set $E$. It was shown earlier by the 1st two authors, see [4], that $E$ is a subset of measure zero of the space $\textbf{H}(d)$ of $d\times d$ Hermitian matrices. In this paper, we show that the set $E$ has small Hausdorff dimension, $\dim E \le \dim \textbf{H}(d)-1 = d^2-1$.


2021 ◽  
Vol 182 (2) ◽  
Author(s):  
Li Chen ◽  
Jinyeop Lee ◽  
Matthew Liew

AbstractWe study the time dependent Schrödinger equation for large spinless fermions with the semiclassical scale $$\hbar = N^{-1/3}$$ ħ = N - 1 / 3 in three dimensions. By using the Husimi measure defined by coherent states, we rewrite the Schrödinger equation into a BBGKY type of hierarchy for the k particle Husimi measure. Further estimates are derived to obtain the weak compactness of the Husimi measure, and in addition uniform estimates for the remainder terms in the hierarchy are derived in order to show that in the semiclassical regime the weak limit of the Husimi measure is exactly the solution of the Vlasov equation.


Author(s):  
Ian Doust ◽  
Qiu Bozhou

AbstractWell-bounded operators are those which possess a bounded functional calculus for the absolutely continuous functions on some compact interval. Depending on the weak compactness of this functional calculus, one obtains one of two types of spectral theorem for these operators. A method is given which enables one to obtain both spectral theorems by simply changing the topology used. Even for the case of well-bounded operators of type (B), the proof given is more elementary than that previously in the literature.


1980 ◽  
Vol 29 (4) ◽  
pp. 399-406
Author(s):  
Peter Dierolf ◽  
Jürgen Voigt

AbstractWe prove a result on compactness properties of Fréchet-derivatives which implies that the Fréchet-derivative of a weakly compact map between Banach spaces is weakly compact. This result is applied to characterize certain weakly compact composition operators on Sobolev spaces which have application in the theory of nonlinear integral equations and in the calculus of variations.


2012 ◽  
Vol 12 (01) ◽  
pp. 1150004
Author(s):  
RICHARD C. BRADLEY

In an earlier paper by the author, as part of a construction of a counterexample to the central limit theorem under certain strong mixing conditions, a formula is given that shows, for strictly stationary sequences with mean zero and finite second moments and a continuous spectral density function, how that spectral density function changes if the observations in that strictly stationary sequence are "randomly spread out" in a particular way, with independent "nonnegative geometric" numbers of zeros inserted in between. In this paper, that formula will be generalized to the class of weakly stationary, mean zero, complex-valued random sequences, with arbitrary spectral measure.


Sign in / Sign up

Export Citation Format

Share Document