Reaction kinetics including participation of the solid phase: Kinetic equations and determination of specific reaction rates

1963 ◽  
Vol 2 (2) ◽  
pp. 157
Author(s):  
A ROSOVSKII
2016 ◽  
pp. 137-142
Author(s):  
V.O. Benyuk ◽  
◽  
V.M. Goncharenko ◽  
T.R. Nykoniuk ◽  
◽  
...  

The objective: to еxplore the relationship between the activity of endometrial proliferation and the state of the local immune response in the uterus in the conditions berprestasi process. Patients and methods. Examined 228 women of reproductive and perimenopausal age with endometrial pathology using ultrasound and then performing hysteroresectoscopy. Determination of the concentrations of the cytokines IL-1, IL-2, IL-6 and TNF was performed by solid phase ELISA. Results. Found a trend that confirms the loss of sensitivity to hormones at the stage of malignancy of the endometrium and can be used as diagnostic determinants in determining the nature of intrauterine pathology and criterion of the effectiveness of conservative therapy. Conclusion. Improving etiopatogenetice approach to the therapy of hyperplastic proce.sses of endometrium with determination of receptor phenotype of the endometrium is a research direction in modern gynecology, which will help to improve the results of treatment and prevention of intrauterine pathology. Key words: endometrial hyperplasia,the receptors for progesterone and estrogen, immunohistochemical method.


2017 ◽  
Author(s):  
Belinda Slakman ◽  
Richard West

<div> <div> <div> <p>This article reviews prior work studying reaction kinetics in solution, with the goal of using this information to improve detailed kinetic modeling in the solvent phase. Both experimental and computational methods for calculating reaction rates in liquids are reviewed. Previous studies, which used such methods to determine solvent effects, are then analyzed based on reaction family. Many of these studies correlate kinetic solvent effect with one or more solvent parameters or properties of reacting species, but it is not always possible, and investigations are usually done on too few reactions and solvents to truly generalize. From these studies, we present suggestions on how best to use data to generalize solvent effects for many different reaction types in a high throughput manner. </p> </div> </div> </div>


2020 ◽  
Vol 75 (3) ◽  
pp. 131-137
Author(s):  
Yu. N. Vodyanitskii ◽  
N. A. Avetov ◽  
A. T. Savichev ◽  
S. Ya. Trofimov ◽  
E. A. Shishkonakova

Sign in / Sign up

Export Citation Format

Share Document