Measurement of the lattice constant of Si-Ge heteroepitaxial layers grown on a silicon substrate

1979 ◽  
Vol 19 (3) ◽  
pp. 198
2018 ◽  
Vol 58 (SA) ◽  
pp. SAAD06
Author(s):  
Satoru Kaneko ◽  
Takashi Tokumasu ◽  
Yoshimi Nakamaru ◽  
Chiemi Kokubun ◽  
Kayoko Konda ◽  
...  

Author(s):  
D. Gerthsen

The prospect of technical applications has induced a lot of interest in the atomic structure of the GaAs on Si(100) interface and the defects in its vicinity which are often studied by high resolution transmission electron microscopy. The interface structure is determined by the 4.1% lattice constant mismatch between GaAs and Si, the large difference between the thermal expansion coefficients and the polar/nonpolar nature of the GaAs on Si interface. The lattice constant mismatch is compensated by misfit dislocations which are characterized by a/2<110> Burgers vectors b which are oriented parallel or inclined on {111} planes with respect to the interface. Stacking faults are also frequently observed. They are terminated by partial dislocations with b = a/6<112> on {111} planes. In this report, the atomic structure of stair rod misfit dislocations is analysed which are located at the intersection line of two stacking faults at the interface.A very thin, discontinous film of GaAs has been grown by MBE on a Si(100) substrate. Fig.1.a. shows an interface section of a 27 nm wide GaAs island along [110] containing a stair rod dislocation. The image has been taken with a JEOL 2000EX with a spherical aberration constant Cs = 1 mm, a spread of focus Δz = 10 nm and an angle of beam convergence ϑ of 2 mrad.


2014 ◽  
Vol E97.C (7) ◽  
pp. 677-682
Author(s):  
Sung YUN WOO ◽  
Young JUN YOON ◽  
Jae HWA SEO ◽  
Gwan MIN YOO ◽  
Seongjae CHO ◽  
...  

2016 ◽  
Vol 12 (1) ◽  
pp. 4141-4144
Author(s):  
Garima Jain

Polycrystalline films of tin telluride were prepared by sintering technique. The structural investigation of the films with different thicknesses enables to determine lattice parameter, crystallite size and strain existing in the films. The XRD traces showed that strain was tensile in nature. The crystallite size increases with thickness while strain decreases. Higher the value of tensile strain, larger is the lattice constant. The optical energy gap shows a descending nature with increasing strain and so with the lattice constant. Such an attempt made to delve into interdependence of basic physical quantities helps to explore the properties of SnTe and utilize it as an alternative to heavy metal chalcogenides in various technological applications.  


2014 ◽  
Vol 2 (1) ◽  
pp. 20-23
Author(s):  
Jaskiran Kaur ◽  
◽  
Surinder Singh ◽  

Author(s):  
J.G. van Hassel ◽  
Xiao-Mei Zhang

Abstract Failures induced in the silicon substrate by process marginalities or process mistakes need continuous attention in new as well as established technologies. Several case studies showing implant related defects and dislocations in silicon will be discussed. Depending on the electrical characteristics of the failure the localization method has to be chosen. The emphasis of the discussion will be on the importance of the right choice for further physical de-processing to reveal the defect. This paper focuses on the localization method, the de- processing technique and the use of Wright etch for subsequent TEM preparation.


Author(s):  
Younan Hua ◽  
Bingsheng Khoo ◽  
Henry Leong ◽  
Yixin Chen ◽  
Eason Chan ◽  
...  

Abstract In wafer fabrication, a silicon nitride (Si3N4) layer is widely used as passivation layer. To qualify the passivation layers, traditionally chemical recipe PAE (H3PO4+ HNO3) is used to conduct passivation pinhole test. However, it is very challenging for us to identify any pinholes in the Si3N4 layer with different layers underneath. For example, in this study, the wafer surface is Si3N4 layer and the underneath layer is silicon substrate. The traditional receipt of PAE cannot be used for passivation qualification. In this paper, we will report a new recipe using KOH solution to identify the pinhole in the Si3N4 passivation layer.


Sign in / Sign up

Export Citation Format

Share Document