Effect of initial composition, phase separation temperature and polymer crystallization on the formation of microcellular structures via thermally induced phase separation

Polymer ◽  
1994 ◽  
Vol 35 (14) ◽  
pp. 3060-3068 ◽  
Author(s):  
Anand Laxminarayan ◽  
Kenneth S. McGuire ◽  
Sung Soo Kim ◽  
Douglas R. Lloyd
Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1152
Author(s):  
Tatyana Kirila ◽  
Anna Smirnova ◽  
Alla Razina ◽  
Andrey Tenkovtsev ◽  
Alexander Filippov

The water–salt solutions of star-shaped six-arm poly-2-alkyl-2-oxazines and poly-2-alkyl-2-oxazolines were studied by light scattering and turbidimetry. The core was hexaaza[26]orthoparacyclophane and the arms were poly-2-ethyl-2-oxazine, poly-2-isopropyl-2-oxazine, poly-2-ethyl-2-oxazoline, and poly-2-isopropyl-2-oxazoline. NaCl and N-methylpyridinium p-toluenesulfonate were used as salts. Their concentration varied from 0–0.154 M. On heating, a phase transition was observed in all studied solutions. It was found that the effect of salt on the thermosensitivity of the investigated stars depends on the structure of the salt and polymer and on the salt content in the solution. The phase separation temperature decreased with an increase in the hydrophobicity of the polymers, which is caused by both a growth of the side radical size and an elongation of the monomer unit. For NaCl solutions, the phase separation temperature monotonically decreased with growth of salt concentration. In solutions with methylpyridinium p-toluenesulfonate, the dependence of the phase separation temperature on the salt concentration was non-monotonic with minimum at salt concentration corresponding to one salt molecule per one arm of a polymer star. Poly-2-alkyl-2-oxazine and poly-2-alkyl-2-oxazoline stars with a hexaaza[26]orthoparacyclophane core are more sensitive to the presence of salt in solution than the similar stars with a calix[n]arene branching center.


Desalination ◽  
2006 ◽  
Vol 192 (1-3) ◽  
pp. 151-159 ◽  
Author(s):  
Jun Zhang ◽  
Jinghong Fu ◽  
Xiaolin Wang ◽  
Bijia Wang ◽  
Zhongzi Xu ◽  
...  

2005 ◽  
Vol 267 (1-2) ◽  
pp. 90-98 ◽  
Author(s):  
J ZHOU ◽  
J YIN ◽  
R LV ◽  
Q DU ◽  
W ZHONG

2016 ◽  
Vol 848 ◽  
pp. 726-732 ◽  
Author(s):  
Rong Liu ◽  
Yan Wang ◽  
Jing Zhu ◽  
Zu Ming Hu ◽  
Jun Rong Yu

The effects of Modified NanoSiO2 Agents on the morphology and performance of ultra-high-molecular weight polyethylene (UHMWPE) microporous membranes via thermally induced phase separation were investigated in this work. The NanoSiO2 was surface modified by silane coupling agent KH570 (KH570-NanoSiO2). Differential scanning calorimetry (DSC) and X-Ray Diffraction (XRD) were performed to obtain crystallization of UHMWPE/white oil/ KH570-NanoSiO2 doped system. The morphology and performance of the prepared UHMWPE microporous membranes were characterized with scanning electron microscopy (SEM) and microfiltration experiments. The results showed that the morphology of UHMWPE membrane could be disturbed by KH570-NanoSiO2. Porosity and the rejection of Bovine serum albumin (BSA) of the blend membrane increased with increasing concentration of Modified NanoSiO2, while the water flux slightly decreased.


Sign in / Sign up

Export Citation Format

Share Document