Growth kinetics of iron silicides fabricated by solid phase epitaxy or ion beam synthesis

1992 ◽  
Vol 215 (1) ◽  
pp. 76-83 ◽  
Author(s):  
K. Radermacher ◽  
S. Mantl ◽  
Ch. Dieker ◽  
H. Lüth ◽  
C. Freiburg
2004 ◽  
Vol 95 (8) ◽  
pp. 4427-4431 ◽  
Author(s):  
B. C. Johnson ◽  
J. C. McCallum

1990 ◽  
Vol 57 (13) ◽  
pp. 1340-1342 ◽  
Author(s):  
J. A. Roth ◽  
G. L. Olson ◽  
D. C. Jacobson ◽  
J. M. Poate

2014 ◽  
Vol 573 ◽  
pp. 84-89 ◽  
Author(s):  
Neha Sharma ◽  
K. Prabakar ◽  
S. Dash ◽  
A.K. Tyagi

1990 ◽  
Vol 205 ◽  
Author(s):  
J. A. Roth ◽  
G. L. Olson ◽  
D. C. Jacobson ◽  
J. M. Poate ◽  
C. Kirschbaum

AbstractThis paper discusses the intrusion of H into a-Si layers during solid phase epitaxy and the effect of this H on the growth kinetics. We show that during annealing in the presence of water vapor, H is continuously generated at the oxidizing a-Si surface and diffuses into the amorphous layer, where it causes a reduction in the epitaxial growth rate. The measured variation of growth rate with the depth of the amorphous/crystal interface is correlated with the concentration of H at the interface. The diffusion coefficient for H in a-Si is determined by comparing measured depth profiles with calculated values. Hydrogen intrusion is observed even in layers annealed in vacuum and in inert gas ambients. Thin (<;5000 Åthick) a-Si layers are especially susceptible to this effect, but we show that in spite of the presence of H the activation energy for SPE derived earlier from thin-layer data is in good agreement with the intrinsic value obtained from thick, hydrogen-free layers.


1996 ◽  
Vol 438 ◽  
Author(s):  
R. G. Elliman ◽  
H. Jiang ◽  
W. C. Wong ◽  
P. Kringhøj

AbstractGexSi1-x, strained layers can be fabricated by Ge implantation and solid-phase epitaxy and can be used in electronic devices to improve their performance. Several important materials science issues are addressed, including the effect of the strain on solid-phase-epitaxy, the effect of oxidation on the implanted Ge distribution, and the effect of Ge on the oxidation rate of Si. The potential of this process is demonstrated by comparing the performance of metal-oxidesemiconductor field-effect-transistors (MOSFETs) employing ion-beam synthesised GeSi strained layer channel regions with that of Si-only devices.


2000 ◽  
Vol 647 ◽  
Author(s):  
Sabina Spiga ◽  
Sandro Ferrari ◽  
Marco Fanciulli ◽  
Bernd Schmidt ◽  
Karl-Heinz Heinig ◽  
...  

AbstractIn this work we investigate the ion beam synthesis of Sn and Sb clusters in thin oxides. 80 keV (fluences of 0.1-1 × 1016 cm−2) Sn implantation in 85 nm thick SiO2, followed by annealing (800-1000°C for 30-300 sec under Ar or N 2 dry ambient) in a rapid thermal processing (RTP) system, leads to the formation of two cluster bands, near the middle of the SiO2 layer and the Si/SiO2 interface. In addition, big isolated clusters are randomly distributed between the two bands. Cluster-size distribution and cluster-crystallinity are related to implantation fluence and annealing time. Low energy (10-12 keV) Sb and Sn implantation (fluences 2-5 × 1015 cm−2) leads to the formation of very uniform cluster-size distribution. Under specific process conditions, only an interface cluster band is observed.


1997 ◽  
Vol 82 (11) ◽  
pp. 5480-5483 ◽  
Author(s):  
A. Baba ◽  
H. Aramaki ◽  
T. Sadoh ◽  
T. Tsurushima

Sign in / Sign up

Export Citation Format

Share Document