process conditions
Recently Published Documents


TOTAL DOCUMENTS

4072
(FIVE YEARS 1282)

H-INDEX

61
(FIVE YEARS 13)

2022 ◽  
Author(s):  
Brock Lumbers ◽  
David W. Agar ◽  
Joachim Gebel ◽  
Frank Platte

The demand for low-emission hydrogen is set to grow as the world transitions to a future hydrogen economy. Unlike current methods of hydrogen production, which largely derive from fossil fuels with unabated emissions, the thermo-catalytic methane decomposition (TCMD) process is a promising intermediate solution that generates no direct carbon dioxide emissions and can bridge the transition to green hydrogen whilst utilising existing gas infrastructure. This process is yet to see widespread adoption, however, due to the high catalyst turnover costs resulting from the inevitable deactivation of the catalyst, which plays a decisive role in the feasibility of the process. In this study, a feasible TCMD process was identified and a simplified mathematical model was developed, which provides a dynamic estimation for the hydrogen production rate and catalyst turnover costs over various process conditions. The work consisted of a parametric study as well as an investigation into the different process modes. Based on the numerous simulation results it was possible to find the optimal process parameters that maximise the hydrogen pro- duction rate and minimise the catalyst turnover costs, therefore increasing the economic potential of the process and hence its commercial viability.


2022 ◽  
Author(s):  
BELETE BAYE Gelaw ◽  
Tamrat Tesfaye

Abstract The Textile industry is an important contributor to the GDP of countries worldwide. Both natural and synthetic fibers are the main raw materials for this sector. Environmental concerns, depletion of non-renewable resources, the high price of oil and limited oil reserves with consumer demand is driving research into cheap, biodegradable, sustainable, renewable and abundantly available green materials. Natural fibers are of the good substitute sources for swapping synthetic fibers and reinforcing polymer matrices because of their contributions in maintaining of ecology, nature of disposal, low energy requirement for processing and sustainability. The current research emphases on evaluating and determining the best extraction methods to process and treat cyperus Dichrostachus A.Rich plant in order to make the fiber suitable for variety of applications. Cyperus Dichrostachus A.Rich plant was treated with two conditions (cold and warm conditions) using statistically planned tests. Process conditions were optimised using central composite design methodology with the experimental design. Under optimised conditions, the strength and fiber yield of CDA fibers were significantly compared. The strength and fiber yield of the fiber was at maximized with optimized conditions and use for valorisation applications.


Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 151
Author(s):  
Vicky Shettigondahalli Ekanthalu ◽  
Satyanarayana Narra ◽  
Tommy Ender ◽  
Edward Antwi ◽  
Michael Nelles

Phosphorus (P) recovery from alternative P-rich residues is essential to meet the growing demands of food production globally. Despite sewage sludge being a potential source for P, its direct application on agricultural land is controversial because of the obvious concerns related to heavy metals and organic pollutants. Further, most of the available P recovery and sludge management technologies are cost-intensive as they require mandatory dewatering of sewage sludge. In this regard, hydrothermal carbonization (HTC) has gained great attention as a promising process to effectively treat the wet sewage sludge without it having to be dewatered, and it simultaneously enables the recovery of P. This study was conducted to analyse and compare the influence of acid (H2SO4) addition during and after HTC of sewage sludge on P leaching and the characteristics of hydrochar. The obtained results suggested that despite using the same amount of H2SO4, P leaching from solid to liquid phase was significantly higher when acid was used after the HTC of sewage sludge in comparison with acid utilization during the HTC process. After HTC, the reduction in acid-buffering capacity of sewage sludge and increase in solubility of phosphate precipitating metal ions had a greater influence on the mobilization of P from solid to liquid phase. In contrast, utilization of H2SO4 in different process conditions did not have a great influence on proximate analysis results and calorific value of consequently produced hydrochar.


Bioanalysis ◽  
2022 ◽  
Author(s):  
Caroline Kittinger ◽  
Jared Delmar ◽  
Lisa Hewitt ◽  
Rebecca Holcomb ◽  
Christopher Jones ◽  
...  

Development of biotherapeutics require pharmacokinetic/pharmacodynamic (PK/PD) and immunogenicity assays that are frequently in a ligand-binding assay (LBA) format. Conjugated critical reagents for LBAs are generated conjugation of the biotherapeutic drug or anti-drug molecule with a label. Since conjugated critical reagent quality impacts LBA performance, control of the generation process is essential. Our perspective is that process development methodologies should be integrated into critical reagent production to understand the impact of conjugation reactions, purification techniques and formulation conditions on the quality of the reagent. In this article, case studies highlight our approach to developing process conditions for different molecular classes of critical reagents including antibodies and a peptide. This development approach can be applied to the generation of future conjugated critical reagents.


2022 ◽  
Vol 327 ◽  
pp. 133-139
Author(s):  
Wen Ying Qu ◽  
Xiao Gang Hu ◽  
Min Luo ◽  
Qiang Zhu

Spherical morphology is the typical characteristic of the microstructure in semi-solid slurries, while the formation mechanism of these spherical grains is still unclear, especially the migration of the solid-liquid interface under different process conditions. This study will focus on the effect of pouring temperature and swirling on the morphology of grains. A phase field-lattice-Boltzmann method using parallel computing and adaptive mesh refinement (Para-AMR) was employed to study the FCC α-Al phase evolution in binary Al-Si aluminum alloy. Study results represent that the pouring temperature has a significant influence on the morphology of the α-Al grains. Low pouring temperature is a benefit for the formation of spherical microstructures. And the swirling can refine the microstructure under high pouring temperature.


2022 ◽  
Vol 9 (1) ◽  
Author(s):  
Pleasure Chisom Ajayo ◽  
Mei Huang ◽  
Li Zhao ◽  
Dong Tian ◽  
Qin Jiang ◽  
...  

AbstractBy way of broadening the use of diverse sustainable bioethanol feedstocks, the potentials of Paper mulberry fruit juice (PMFJ), as a non-food, sugar-based substrate, were evaluated for fuel ethanol production. The suitability of PMFJ was proven, as maximum ethanol concentration (56.4 g/L) and yield (0.39 g/g) were achieved within half a day of the start of fermentation, corresponding to very high ethanol productivity of 4.7 g/L/hr. The established potentials were further optimally maximized through the response surface methodology (RSM). At the optimal temperature of 30 °C, yeast concentration of 0.55 g/L, and pH of 5, ethanol concentration, productivity, and yield obtained were 73.69 g/L, 4.61 g/L/hr, and 0.48 g/g, respectively. Under these ideal conditions, diverse metal salts were afterward screened for their effects on PMFJ fermentation. Based on a two-level fractional factorial design, nutrient addition had no positive impact on ethanol production. Thus, under the optimal process conditions, and without any external nutrient supplementation, bioethanol from PMFJ compared favorably with typical sugar-based energy crops, highlighting its resourcefulness as a high-value biomass resource for fuel ethanol production. Graphical Abstract


Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 125
Author(s):  
Sriwiang Rittisak ◽  
Ratchanee Charoen ◽  
Natthaya Choosuk ◽  
Wanticha Savedboworn ◽  
Wiboon Riansa-ngawong

The optimal process conditions when examining the antioxidant potential, total polyphenol content, and attribute liking in roasted rice germ flavored herbal tea were investigated using response surface methodology (RSM). The influence upon the extraction process of time and temperature was assessed using a full factorial design on three levels with two variables (32), involving five central point replicates. Extraction temperature (70 °C, 80 °C, and 90 °C) and extraction time (3 min, 4.5 min, and 6 min) served as independent variables, while the dependent variables were allocated to the regression equation to determine antioxidant activity (R2 = 0.941) along with total polyphenol content (R2 = 0.849), flavor liking score (R2 = 0.758), and overall liking score (R2 = 0.816). Following experimentation, it was determined that the optimal time and temperature conditions to maximize total polyphenol content, antioxidant activity, flavor, and overall liking score were in a range of 86 °C to 90 °C for 3.4 min to 5.9 min. When these conditions were imposed, the antioxidant potential, total polyphenol content, flavor, and overall liking score were >70% for DPPH scavenging activity, >75 mgGAE/g, >6.7 (like moderately), and >6.5 (like moderately), respectively.


2022 ◽  
Vol 12 (2) ◽  
pp. 569
Author(s):  
Yuliya Kulikova ◽  
Stanislav Sukhikh ◽  
Svetlana Ivanova ◽  
Olga Babich ◽  
Natalia Sliusar

At the moment, macroalgae blooms in sea waters, the rotting of which causes greenhouse gas emissions and contributes to the formation of a negative ecological and economic situation in coastal zones, which has become a serious problem. Fuel production through hydrothermal liquefaction (HTL) of macroalgae and marine debris is a promising solution to this ecological problem. The article provides an overview of studies on producing fuel from macroalgae and an assessment of the possibility of their joint recovery with marine debris. The optimal process conditions and their technological efficiency were evaluated. The article shows the feasibility of using heterogeneous catalysis and co-solvent to increase the yield of bio-oil and improve its quality. An assessment of the possibility of joint processing of waste macroalgae and marine debris showed the inexpediency of this direction. The high degree of drift macroalgae contamination also raises the question of the appropriateness of the preliminary extraction of other valuable components for nutrition use, such as fats, proteins, carbohydrates, and their derivatives.


Sign in / Sign up

Export Citation Format

Share Document