A variational treatment for the time dependent boltzmann equation as a basis for numerical solutions conserving neutrons

1996 ◽  
Vol 30 (4) ◽  
pp. 417-465 ◽  
Author(s):  
R.T. Ackroyd ◽  
C.R.E. de Oliveira
1996 ◽  
Vol 154 ◽  
pp. 149-153
Author(s):  
S. T. Wu ◽  
A. H. Wang ◽  
W. P. Guo

AbstractWe discuss the self-consistent time-dependent numerical boundary conditions on the basis of theory of characteristics for magnetohydrodynamics (MHD) simulations of solar plasma flows. The importance of using self-consistent boundary conditions is demonstrated by using an example of modeling coronal dynamic structures. This example demonstrates that the self-consistent boundary conditions assure the correctness of the numerical solutions. Otherwise, erroneous numerical solutions will appear.


Author(s):  
S. Homeniuk ◽  
S. Grebenyuk ◽  
D. Gristchak

The relevance. The aerospace domain requires studies of mathematical models of nonlinear dynamic structures with time-varying parameters. The aim of the work. To obtain an approximate analytical solution of nonlinear forced oscillations of the designed models with time-dependent parameters. The research methods. A hybrid approach based on perturbation methods, phase integrals, Galorkin orthogonalization criterion is used to obtain solutions. Results. Nonlocal investigation of nonlinear systems behavior is done using results of analytical and numerical methods and developed software. Despite the existence of sufficiently powerful numerical software systems, qualitative analysis of nonlinear systems with variable parameters requires improved mathematical models based on effective analytical, including approximate, solutions, which using numerical methods allow to provide a reliable analysis of the studied structures at the stage designing. An approximate solution in analytical form is obtained with constant coefficients that depend on the initial conditions. Conclusions. The approximate analytical results and direct numerical solutions of the basic equation were compared which showed a sufficient correlation of the obtained analytical solution. The proposed algorithm and program for visualization of a nonlinear dynamic process could be implemented in nonlinear dynamics problems of systems with time-dependent parameters.


Author(s):  
Foukeea Qasim ◽  
Tian-Chuan Sun ◽  
S. Z. Abbas ◽  
W. A. Khan ◽  
M. Y. Malik

This paper aims to investigate the time-dependent stagnation point flow of an Oldroyd-B fluid subjected to the modified Fourier law. The flow into a vertically stretched cylinder at the stagnation point is discussed. The heat flux model of a non-Fourier is intended for the transfer of thermal energy in fluid flow. The study is carried out on the surface heating source, namely the surface temperature. The developed nonlinear partial differential equation for regulating fluid flow and heat transport is transformed via appropriate similarity variables into a nonlinear ordinary differential equation. The development and analysis of convergent series solutions were considered for velocity and temperature. Prandtl number numerical values are computed and investigated. This study’s findings are compared to the previous findings. By making use of the bvp4c Matlab method, numerical solutions are obtained. Besides, high buoyancy parameter values are found to increase the fluid velocity for the stimulating approach. By improving the thermal relaxation time parameter values, heat transfer in the fluid flow decreases. The temperature field effects are displayed graphically.


Author(s):  
Weitao Yang ◽  
Jin Xu

Most analytical and semi-analytical models for pumping-induced land subsidence invoke the simplifying assumptions regarding characteristics of geomaterials, as well as the pattern of drawdown response to pumping. This paper presents an analytical solution for one-dimensional consolidation of the multilayered soil due to groundwater drawdown, in which viscoelastic property and time-dependent drawdown are taken into account. The presented solution is developed by using the boundary transformation techniques. The validity of the proposed solution is verified by comparing with a degenerated case for a single layer, as well as with the numerical solutions and experimental results for a two-layer system. The difference between the average consolidation degree Up defined by hydraulic head and that Us defined by total settlement is discussed. The detailed parametric studies are conducted to reveal the effects of viscoelastic properties and drawdown patterns on the consolidation process. It is revealed that while the effect of different drawdown response patterns is significant during the early-intermediate stages of consolidation, the viscoelastic properties may have a more dominant influence on long-term consolidation behavior, depending on the values of the material parameters, which are reflected in both the deformation process of soil layers and the dissipation of excess pore-water pressure.


Author(s):  
Sundar Namala ◽  
Rizwan Uddin

Abstract Nodal integral methods (NIM) are a class of efficient coarse mesh methods that use transverse averaging to reduce the governing partial differential equation(s) (PDE) into a set of ordinary differential equations (ODE). The standard application of NIM is restricted to domains that have boundaries parallel to one of the coordinate axes/palnes (in 2D/3D). The hybrid nodal-integral/finite-element method (NI-FEM) reported here has been developed to extend the application of NIM to arbitrary domains. NI-FEM is based on the idea that the interior region and the regions with boundaries parallel to the coordinate axes (2D) or coordinate planes (3D) can be solved using NIM, and the rest of the domain can be discretized and solved using FEM. The crux of the hybrid NI-FEM is in developing interfacial conditions at the common interfaces between the NIM regions and FEM regions. We here report the development of hybrid NI-FEM for the time-dependent convection-diffusion equation (CDE) in arbitrary domains. Resulting hybrid numerical scheme is implemented in a parallel framework in Fortran and solved using PETSc. The preliminary approach to domain decomposition is also discussed. Numerical solutions are compared with exact solutions, and the scheme is shown to be second order accurate in both space and time. The order of approximations used for the development of the scheme are also shown to be second order. The hybrid method is more efficient compared to standalone conventional numerical schemes like FEM.


Author(s):  
Lyudmyla Barannyk ◽  
John Crepeau ◽  
Patrick Paulus ◽  
Ali Siahpush

A nonlinear, first-order ordinary differential equation that involves Fourier-Bessel series terms has been derived to model the time-dependent motion of the solid-liquid interface during melting and solidification of a material with constant internal heat generation in cylindrical coordinates. The model is valid for all Stefan numbers. One of the primary applications of this problem is for a nuclear fuel rod during meltdown. The numerical solutions to this differential equation are compared to the solutions of a previously derived model that was based on the quasi-steady approximation, which is valid only for Stefan numbers less than one. The model presented in this paper contains exponentially decaying terms in the form of Fourier-Bessel series for the temperature gradients in both the solid and liquid phases. The agreement between the two models is excellent in the low Stefan number regime. For higher Stefan numbers, where the quasi-steady model is not accurate, the new model differs from the approximate model since it incorporates the time-dependent terms for small times, and as the system approaches steady-state, the curves converge. At higher Stefan numbers, the system approaches steady-state faster than for lower Stefan numbers. During the transient process for both melting and solidification, the temperature profiles become parabolic.


2019 ◽  
Vol 874 ◽  
pp. 926-951 ◽  
Author(s):  
D. G. Schaeffer ◽  
T. Barker ◽  
D. Tsuji ◽  
P. Gremaud ◽  
M. Shearer ◽  
...  

Granular flows occur in a wide range of situations of practical interest to industry, in our natural environment and in our everyday lives. This paper focuses on granular flow in the so-called inertial regime, when the rheology is independent of the very large particle stiffness. Such flows have been modelled with the $\unicode[STIX]{x1D707}(I),\unicode[STIX]{x1D6F7}(I)$-rheology, which postulates that the bulk friction coefficient $\unicode[STIX]{x1D707}$ (i.e. the ratio of the shear stress to the pressure) and the solids volume fraction $\unicode[STIX]{x1D719}$ are functions of the inertial number $I$ only. Although the $\unicode[STIX]{x1D707}(I),\unicode[STIX]{x1D6F7}(I)$-rheology has been validated in steady state against both experiments and discrete particle simulations in several different geometries, it has recently been shown that this theory is mathematically ill-posed in time-dependent problems. As a direct result, computations using this rheology may blow up exponentially, with a growth rate that tends to infinity as the discretization length tends to zero, as explicitly demonstrated in this paper for the first time. Such catastrophic instability due to ill-posedness is a common issue when developing new mathematical models and implies that either some important physics is missing or the model has not been properly formulated. In this paper an alternative to the $\unicode[STIX]{x1D707}(I),\unicode[STIX]{x1D6F7}(I)$-rheology that does not suffer from such defects is proposed. In the framework of compressible $I$-dependent rheology (CIDR), new constitutive laws for the inertial regime are introduced; these match the well-established $\unicode[STIX]{x1D707}(I)$ and $\unicode[STIX]{x1D6F7}(I)$ relations in the steady-state limit and at the same time are well-posed for all deformations and all packing densities. Time-dependent numerical solutions of the resultant equations are performed to demonstrate that the new inertial CIDR model leads to numerical convergence towards physically realistic solutions that are supported by discrete element method simulations.


Sign in / Sign up

Export Citation Format

Share Document