Cytogenetic analysis of in vitro karyotype evolution in a cell line established from nonmalignant human mammary epithelium

1989 ◽  
Vol 39 (1) ◽  
pp. 103-118 ◽  
Author(s):  
Kirsten Vang Nielsen ◽  
Per Briand
1973 ◽  
Vol 50 (3) ◽  
pp. 669-674 ◽  
Author(s):  
Alan S. Robson ◽  
Saul W. Rosen ◽  
Armen H. Tashjian ◽  
Bruce D. Weintraub

2021 ◽  
Vol 41 (1) ◽  
Author(s):  
Bolun Wang ◽  
Haohui Guo ◽  
Tianxiang Geng ◽  
Kening Sun ◽  
Liang Zhang ◽  
...  

Abstract Aseptic loosening following periprosthetic osteolysis is the primary complication that limits the lifetime of total joint arthroplasty (TJA). The wear particles trigger a chronic inflammation response in the periprosthetic tissue and turn over the bone balance to bone resorption. The present study aimed to investigate the possible effect and mechanism of strontium ranelate (SR), a clinically safe drug for osteoporosis, on particle-induced periprosthetic osteolysis. Thirty-six female C57BL/6j mice underwent tibial Ti-nail implantation to establish an animal model of aseptic loosening. After 12 weeks, micro-CT results showed that strontium ranelate could inhibit periprosthetic bone resorption. In vitro, Ti particles were used to stimulate RAW264.7 cell line to collect conditioned medium, and co-culture MC3T3-E1 cell line with conditioned medium to establish a cell model of aseptic loosening. The results of alkaline phosphatase (ALP) detection, immunofluorescence, and flow cytometry demonstrated that strontium ranelate could regulate the expression of OPG/RANKL, promote differentiation and mineralization, and inhibit apoptosis in osteoblasts. Moreover, we revealed that SR’s exerted its therapeutic effect by down-regulating sclerostin, thereby activating the Wnt/β-catenin signal pathway. Therefore, this research suggests that strontium ranelate could be a potential drug for the prevention and treatment of particle-induced aseptic loosening post-TJA.


2021 ◽  
Author(s):  
Nuno Vale ◽  
Sara Silva ◽  
Diana Duarte ◽  
Diana M. A. Crista ◽  
Luís Pinto da Silva ◽  
...  

The human normal breast cell line MCF-10A is being widely used as a model in toxicity studies due to its structural similarity to the normal human mammary epithelium.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jorge A. Arias-del-Angel ◽  
Jesús Santana-Solano ◽  
Moisés Santillán ◽  
Rebeca G. Manning-Cela

Abstract Numerous works have demonstrated that trypanosomatid motility is relevant for parasite replication and sensitivity. Nonetheless, although some findings indirectly suggest that motility also plays an important role during infection, this has not been extensively investigated. This work is aimed at partially filling this void for the case of Trypanosoma cruzi. After recording swimming T. cruzi trypomastigotes (CL Brener strain) and recovering their individual trajectories, we statistically analyzed parasite motility patterns. We did this with parasites that swim alone or above monolayer cultures of different cell lines. Our results indicate that T. cruzi trypomastigotes change their motility patterns when they are in the presence of mammalian cells, in a cell-line dependent manner. We further performed infection experiments in which each of the mammalian cell cultures were incubated for 2 h together with trypomastigotes, and measured the corresponding invasion efficiency. Not only this parameter varied from cell line to cell line, but it resulted to be positively correlated with the corresponding intensity of the motility pattern changes. Together, these results suggest that T. cruzi trypomastigotes are capable of sensing the presence of mammalian cells and of changing their motility patterns accordingly, and that this might increase their invasion efficiency.


1972 ◽  
Vol 114 (8) ◽  
pp. 1012-1019 ◽  
Author(s):  
Hiroyuki Kuramoto ◽  
Shozo Tamura ◽  
Yukio Notake

1984 ◽  
Vol 160 (1) ◽  
pp. 341-346 ◽  
Author(s):  
E S Vitetta ◽  
R J Fulton ◽  
J W Uhr

In vitro killing of the human Daudi cell line by either univalent [F(ab')] or divalent (IgG) forms of rabbit anti-human Ig (RAHIg) coupled to ricin A chain can be specifically potentiated by a "piggyback" treatment with ricin B chain coupled to goat anti-rabbit Ig (GARIg). When cells are treated with univalent immunotoxin (IT) [F(ab') RAHIg-A] and then cultured, IT can be detected on the cell surface for at least 5 h, since GARIg-B can still enhance killing at this time. These results provide a strategy for in vivo use of A chain- and B chain-containing IT.


Sign in / Sign up

Export Citation Format

Share Document