Arachidonic acid release by basophilic leukemia cells and macrophages stimulated by Ca2+ ionophores, antigen and diacylglycerol: essential role for protein kinase C and prevention by glucocorticosteroids

1991 ◽  
Vol 1091 (3) ◽  
pp. 385-392 ◽  
Author(s):  
U. Zor ◽  
E. Her ◽  
T. Harell ◽  
G. Fischer ◽  
Z. Naor ◽  
...  
1993 ◽  
Vol 21 (5) ◽  
pp. 1259-1263 ◽  
Author(s):  
Gadiparthi N. Rao ◽  
Bernard Lassegue ◽  
Kathy K. Griendling ◽  
R. Wayne Alexander ◽  
Bradford C. Berk

1989 ◽  
Vol 260 (2) ◽  
pp. 365-369 ◽  
Author(s):  
H Banfić ◽  
Z Gatalica

Phospholipid methylation and arachidonic acid release in renal-cortical slices was investigated in vitro after addition of plasma from uninephrectomized or sham-operated rats. Plasma from uninephrectomized rats (‘uni-plasma’) stimulated phospholipid methylation when obtained within the first 3 h after uninephrectomy. With different amounts of added plasma a graded response in phospholipid methylation was obtained. Addition of 50 nM-12-O-tetradecanoylphorbol 13-acetate for 10 min to intact slices also stimulated phospholipid methylation, whereas incubation of slices before addition of ‘uni-plasma’ with 100 microM-1-(5-isoquinolinylsulphonyl)-2-methylpiperazine prevented it, suggesting that protein kinase C stimulates phospholipid methylation in renal-cortical slices. Plasma from uninephrectomized rats also stimulates [3H]arachidonic acid release from phosphatidylcholine (PtdCho) and phosphatidylethanolamine (PtdEtn) via activation of phospholipase A2. Two mechanisms of phospholipase A2 activation are proposed: first, in which it is activated by protein kinase C and releases 3H radioactivity from PtdCho, and second, in which phospholipase A2 is stimulated by Ca2+ ions and releases 3H radioactivity from PtdEtn.


1994 ◽  
Vol 299 (3) ◽  
pp. 845-851 ◽  
Author(s):  
S Shimegi ◽  
F Okajima ◽  
Y Kondo

We have described the pertussis toxin (PTX)-sensitive potentiation of P2-purinergic agonist-induced phospholipase C activation, Ca2+ mobilization and arachidonic acid release by an adenosine receptor agonist, N6-(L-2-phenylisopropyl)adenosine (PIA), which alone cannot influence any of these cellular activities [Okajima, Sato, Nazarea, Sho and Kondo (1989) J. Biol. Chem. 264, 13029-13037]. In the present study we have found that arachidonic acid release was associated with lysophosphatidylcholine production, and conclude that arachidonic acid is produced by phospholipase A2 in FRTL-5 thyroid cells. This led us to assume that PIA augments P2-purinergic arachidonic acid release by increasing [Ca2+]i which, in turn, activates Ca(2+)-sensitive phospholipase A2. The arachidonic acid-releasing response to PIA was, however, always considerably higher (3.1-fold increase) than the Ca2+ response (1.3-fold increase) to the adenosine derivative. In addition, arachidonic acid release induced by the [Ca2+]i increase caused by thapsigargin, an endoplasmic-reticulum Ca(2+)-ATPase inhibitor, or calcium ionophores was also potentiated by PIA without any effect on [Ca2+]i and phospholipase C activity. This action of PIA was also PTX-sensitive, but not affected by the forskolin- or cholera toxin-induced increase in the cellular cyclic AMP (cAMP), suggesting that a PTX-sensitive G-protein(s) and not cAMP mediates the PIA-induced potentiation of Ca(2+)-generated phospholipase A2 activation. Although acute phorbol ester activation of protein kinase C induced arachidonic acid release, P2-purinergic and alpha 1-adrenergic stimulation of arachidonic acid release was markedly increased by the protein kinase C down-regulation caused by the phorbol ester. This suggests a suppressive role for protein kinase C in the agonist-induced activation of arachidonic acid release. We conclude that PIA (and perhaps any of the G1-activating agonists) augments an agonist (maybe any of the Ca(2+)-mobilizing agents)-induced arachidonic acid release by activation of Ca(2+)-dependent phospholipase A2 in addition to enhancement of agonist-induced phospholipase C followed by an increase in [Ca2+]i.


2005 ◽  
Vol 288 (2) ◽  
pp. C475-C482 ◽  
Author(s):  
Maureen C. Meyer ◽  
Pamela J. Kell ◽  
Michael H. Creer ◽  
Jane McHowat

We demonstrated previously that thrombin stimulation of endothelial cells activates a membrane-associated, Ca2+-independent phospholipase A2 (iPLA2) that selectively hydrolyzes arachidonylated plasmalogen phospholipids. We report that incubation of human coronary artery endothelial cells (HCAEC) with phorbol 12-myristate 13-acetate (PMA) to activate protein kinase C (PKC) resulted in hydrolysis of cellular phospholipids similar to that observed with thrombin stimulation (0.05 IU/ml; 10 min). Thrombin stimulation resulted in a decrease in arachidonylated plasmenylcholine (2.7 ± 0.1 vs. 5.3 ± 0.4 nmol PO4/mg of protein) and plasmenylethanolamine (7.5 ± 1.0 vs. 12.0 ± 0.9 nmol PO4/mg of protein). Incubation with PMA resulted in decreases in arachidonylated plasmenylcholine (3.2 ± 0.3 nmol PO4/mg of protein) and plasmenylethanolamine (6.0 ± 1.0 nmol PO4/mg of protein). Incubation of HCAEC with the selective iPLA2 inhibitor bromoenol lactone (5 mM; 10 min) inhibited accelerated plasmalogen phospholipid hydrolysis in response to both PMA and thrombin stimulation. Incubation of HCAEC with PMA (100 nM; 5 min) resulted in increased arachidonic acid release (7.1 ± 0.3 vs. 1.1 ± 0.1%) and increased production of lysoplasmenylcholine (1.4 ± 0.2 vs. 0.6 ± 0.1 nmol PO4/mg of protein), similar to the responses observed with thrombin stimulation. Downregulation of PKC by prolonged exposure to PMA (100 nM; 24 h) completely inhibited thrombin-stimulated increases in arachidonic acid release (7.1 ± 0.6 to 0.5 ± 0.1%) and lysoplasmenylcholine production (2.0 ± 0.1 to 0.2 ± 0.1 nmol PO4/mg of protein). These data suggest that PKC activates iPLA2 in HCAEC, leading to accelerated plasmalogen phospholipid hydrolysis and increased phospholipid metabolite production.


Sign in / Sign up

Export Citation Format

Share Document