prostaglandin e
Recently Published Documents


TOTAL DOCUMENTS

3431
(FIVE YEARS 361)

H-INDEX

104
(FIVE YEARS 8)

2022 ◽  
Author(s):  
Lalehan Özalp ◽  
İlkay Küçükgüzel ◽  
Ayşe Ogan

Abstract Inhibition of microsomal prostaglandin E2 synthase-1 (mPGES-1) is promising for designing novel nonsteroidal anti-inflammatory drugs, as they lack side-effects associated with inhibition of cyclooxygenase enzymes. Azole compounds are nitrogen-containing heterocycles and have a wide use in medicine and are considered as promising compounds in medicinal chemistry. Various computer-aided drug design strategies are incorporated in this study. Structure-based virtual screening was performed employing various docking programs. Receiver Operator Characteristic (ROC) curves were used to evaluate the selectivity of each program. Furthermore, scoring power of Autodock4 and Autodock Vina was assessed by Pearson’s correlation coefficients. Pharmacophore models were generated and Güner-Henry score of the best model was calculated as 0.89. Binding modes of the final 10 azole compounds were analyzed and further investigation of the best binding (-8.38 kcal/mol) compound was performed using molecular dynamics simulation, revealing that furazan1224 (ZINC001142847306) occupied the binding site of the substrate, prostaglandin H2 (PGH2) and remained stable for 100 ns. Continuous hydrogen bonds with amino acids in the active site supported the stability of furazan1224 throughout the trajectory. Pharmacokinetic profile showed that furazan1224 lacks the risks of inhibiting cytochrome P450 3A4 enzyme and central nervous system-related side-effects.


2022 ◽  
Vol 24 (1) ◽  
Author(s):  
Hilde Brouwers ◽  
Johannes Hendrick von Hegedus ◽  
Enrike van der Linden ◽  
Rachid Mahdad ◽  
Margreet Kloppenburg ◽  
...  

Abstract Background Synovial fluid (SF) is commonly used for diagnostic and research purposes, as it is believed to reflect the local inflammatory environment. Owing to its complex composition and especially the presence of hyaluronic acid, SF is usually viscous and non-homogeneous. In this study, we investigated the importance of homogenization of the total SF sample before subsequent analysis. Methods SF was obtained from the knee of 29 arthritis patients (26 rheumatoid arthritis, 2 osteoarthritis, and 1 juvenile idiopathic arthritis patient) as part of standard clinical care. Synovial fluid was either treated with hyaluronidase as a whole or after aliquoting to determine whether the concentration of soluble mediators is evenly distributed in the viscous synovial fluid. Cytokine and IgG levels were measured by ELISA or Luminex and a total of seven fatty acid and oxylipin levels were determined using LC-MS/MS in all aliquots. For cell analysis, synovial fluid was first centrifuged and the pellet was separated from the fluid. The fluid was subsequently treated with hyaluronidase and centrifuged to isolate remaining cells. Cell numbers and phenotype were determined using flow cytometry. Results In all patients, there was less variation in IgG, 17-HDHA, leukotriene B4 (LTB4), and prostaglandin E2 (PGE2) levels when homogenization was performed before aliquoting the SF sample. There was no difference in variation for cytokines, 15-HETE, and fatty acids arachidonic acid (AA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). Between 0.8 and 70% of immune cells (median 5%) remained in suspension and were missing in subsequent analyses when the cells were isolated from untreated SF. This percentage was higher for T and B cells: 7–85% (median 22%) and 7–88% (median 23 %), respectively. Conclusions Homogenization of the entire SF sample leads to less variability in IgG and oxylipin levels and prevents erroneous conclusions based on incomplete isolation of synovial fluid cells.


Biomolecules ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 99
Author(s):  
Anella Saviano ◽  
Simona De Vita ◽  
Maria Giovanna Chini ◽  
Noemi Marigliano ◽  
Gianluigi Lauro ◽  
...  

Tanshinone IIA (TIIA) and cryptotanshinone (CRY) from Salvia miltiorrhiza Bunge were investigated for their inhibitory activity against the cyclooxygenase-2 (COX-2)/microsomal prostaglandin E synthase-1 (mPGES-1)/endothelial prostaglandin 3 (EP3) pathway using in silico, in vitro, in vivo, and ex vivo assays. From the analysis of the docking poses, both diterpenoids were able to interact significantly with COX-2, 5-lipoxygenase (5-LO), platelet-activating factor receptor (PAFR), and mPGES-1. This evidence was further corroborated by data obtained from a cell-free assay, where CRY displayed a significant inhibitory potency against mPGES-1 (IC50 = 1.9 ± 0.4 µM) and 5-LO (IC50 = 7.1 µM), while TIIA showed no relevant inhibition of these targets. This was consistent with their activity to increase mice bleeding time (CRY: 2.44 ± 0.13 min, p ≤ 0.001; TIIA: 2.07 ± 0.17 min p ≤ 0.01) and with the capability to modulate mouse clot retraction (CRY: 0.048 ± 0.011 g, p ≤ 0.01; TIIA: 0.068 ± 0.009 g, p ≤ 0.05). For the first time, our results show that TIIA and, in particular, CRY are able to interact significantly with the key proteins involved not only in the onset of inflammation but also in platelet activity (and hyper-reactivity). Future preclinical and clinical investigations, together with this evidence, could provide the scientific basis to consider these compounds as an alternative therapeutic approach for thrombotic- and thromboembolic-based diseases.


2022 ◽  
Vol 42 (1) ◽  
Author(s):  
Fumiaki Kojima ◽  
Hiroki Sekiya ◽  
Yuka Hioki ◽  
Hitoshi Kashiwagi ◽  
Makoto Kubo ◽  
...  

Abstract Background Microsomal prostaglandin E synthase-1 (mPGES-1) is a key enzyme that acts downstream of cyclooxygenase and plays a major role in inflammation by converting prostaglandin (PG) H2 to PGE2. The present study investigated the effect of genetic deletion of mPGES-1 on the development of immunologic responses to experimental colitis induced by dextran sodium sulfate (DSS), a well-established model of inflammatory bowel disease (IBD). Methods Colitis was induced in mice lacking mPGES-1 (mPGES-1−/− mice) and wild-type (WT) mice by administering DSS for 7 days. Colitis was assessed by body weight loss, diarrhea, fecal bleeding, and histological features. The colonic expression of mPGES-1 was determined by real-time PCR, western blotting, and immunohistochemistry. The impact of mPGES-1 deficiency on T cell immunity was determined by flow cytometry and T cell depletion in vivo. Results After administration of DSS, mPGES-1−/− mice exhibited more severe weight loss, diarrhea, and fecal bleeding than WT mice. Histological analysis further showed significant exacerbation of colonic inflammation in mPGES-1−/− mice. In WT mice, the colonic expression of mPGES-1 was highly induced on both mRNA and protein levels and colonic PGE2 increased significantly after DSS administration. Additionally, mPGES-1 protein was localized in the colonic mucosal epithelium and infiltrated inflammatory cells in underlying connective tissues and the lamina propria. The abnormalities consistent with colitis in mPGES-1−/− mice were associated with higher expression of colonic T-helper (Th)17 and Th1 cytokines, including interleukin 17A and interferon-γ. Furthermore, lack of mPGES-1 increased the numbers of Th17 and Th1 cells in the lamina propria mononuclear cells within the colon, even though the number of suppressive regulatory T cells also increased. CD4+ T cell depletion effectively reduced symptoms of colitis as well as colonic expression of Th17 and Th1 cytokines in mPGES-1−/− mice, suggesting the requirement of CD4+ T cells in the exacerbation of DSS-induced colitis under mPGES-1 deficiency. Conclusions These results demonstrate that mPGES-1 is the main enzyme responsible for colonic PGE2 production and deficiency of mPGES-1 facilitates the development of colitis by affecting the development of colonic T cell–mediated immunity. mPGES-1 might therefore impact both the intestinal inflammation and T cell–mediated immunity associated with IBD.


Author(s):  
Emily A. Hayes ◽  
Janet M. Simsic ◽  
Sergio A. Carrillo ◽  
Diane Hersey ◽  
Virginia Cox ◽  
...  
Keyword(s):  

Author(s):  
Calum T. Robb ◽  
You Zhou ◽  
Jennifer M. Felton ◽  
Birong Zhang ◽  
Marie Goepp ◽  
...  

Background: Group 2 innate lymphoid cells (ILC2s) play a critical role in asthma pathogenesis. Non-steroidal anti-inflammatory drug (NSAID)-exacerbated respiratory disease (NERD) is associated with reduced signaling via EP2, a receptor for prostaglandin E (PGE ). However, the respective roles for the PGE receptors EP2 and EP4 (both share same downstream signaling) in the regulation of lung ILC2 responses has yet been deciphered. Methods: The roles of PGE receptors EP2 and EP4 on ILC2-mediated lung inflammation were investigated using genetically modified mouse lines and pharmacological approaches in IL-33- and Alternaria alternata (A.A.)-induced lung allergy models. The effects of PGE receptors and downstream signals on ILC2 metabolic activation and effector function were examined using in vitro cell cultures. Results: Deficiency of EP2 rather than EP4 augments IL-33-induced lung ILC2 responses and eosinophilic inflammation in vivo. In contrast, exogenous agonism of EP4 but not EP2 markedly restricts IL-33- and Alternaria alternata-induced lung ILC2 responses and eosinophilic inflammation. Mechanistically, PGE directly suppresses IL-33-dependent ILC2 activation through the EP2/EP4-cAMP pathway, which downregulates STAT5 and MYC pathway gene expression and ILC2 energy metabolism. Blocking glycolysis diminishes IL-33-dependent ILC2 responses in mice lacking endogenous PG synthesis but not in PG-competent mice. Conclusion: We have defined a mechanism for optimal suppression of lung ILC2 responses by endogenous PGE -EP2 signaling which underpins the clinical findings of defective EP2 signaling in patients with NERD. Our findings also indicate that exogenously targeting the PGE -EP4-cAMP and energy metabolic pathways may provide novel opportunities for treating ILC2-initiated lung inflammation in asthma and NERD.


Life ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1375
Author(s):  
Kohei Wagatsuma ◽  
Yoshihiro Yokoyama ◽  
Hiroshi Nakase

The number of patients with inflammatory bowel disease (IBD) is increasing worldwide. Endoscopy is the gold standard to assess the condition of IBD. The problem with this procedure is that the burden and cost on the patient are high. Therefore, the identification of a reliable biomarker to replace endoscopy is desired. Biomarkers are used in various situations such as diagnosis of IBD, evaluation of disease activity, prediction of therapeutic effect, and prediction of relapse. C-reactive protein and fecal calprotectin have a lot of evidence as objective biomarkers of disease activity in IBD. The usefulness of the fecal immunochemical test, serum leucine-rich glycoprotein, and urinary prostaglandin E major metabolite have also been reported. Herein, we comprehensively review the usefulness and limitations of biomarkers that can be used in daily clinical practice regarding IBD. To date, no biomarker is sufficiently accurate to replace endoscopy; however, it is important to understand the characteristics of each biomarker and use the appropriate biomarker at the right time in daily clinical practice.


Author(s):  
Constanza Ballesteros‐Martinez ◽  
Raquel Rodrigues‐Diez ◽  
Luis M. Beltrán ◽  
Rosa Moreno‐Carriles ◽  
Ernesto Martínez‐Martínez ◽  
...  

2021 ◽  
Author(s):  
Judy Chen ◽  
Jane C. Deng ◽  
Rachel Zemans ◽  
Min Zhang ◽  
Marc Peters-Golden ◽  
...  

SummaryAging impairs the immune responses to influenza A virus (IAV), resulting in increased mortality to IAV infections in older adults. With aging, there is reduced number and impaired function of alveolar macrophages (AMs), cells critical for defense against IAV. However, factors within the aged lung that impair AMs are not fully known. Using a murine model of IAV infection, we observed that aging increased the level of prostaglandin E2 (PGE2) in the bronchoalveolar lavage fluid (BALF) of aged mice compared to young mice. Blockade of the PGE2 receptor EP2 in aged mice increased AM numbers and subsequently enhanced survival to IAV. Additionally, PGE2 impaired the mitochondrial health of AMs. We also identified senescent type II alveolar epithelial cells (AECs) as a source of the aged-associated PGE2 in the lung. Our results reveal a crosstalk between AECs and AMs, via PGE2, that compromises host defense to IAV infection with aging.


Sign in / Sign up

Export Citation Format

Share Document