Classification of ropy slime-producing lactic acid bacteria based on DNA-DNA homology, and identification of Lactobacillus sake and Leuconostoc amelibiosum as dominant spoilage organisms in meat products

1992 ◽  
Vol 16 (2) ◽  
pp. 167-172 ◽  
Author(s):  
P. Mäkelä ◽  
U. Schillinger ◽  
H. Korkeala ◽  
W.H. Holzapfel
Foods ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 156
Author(s):  
Dominika Jurášková ◽  
Susana C. Ribeiro ◽  
Celia C. G. Silva

The production of exopolysaccharides (EPS) by lactic acid bacteria (LAB) has attracted particular interest in the food industry. EPS can be considered as natural biothickeners as they are produced in situ by LAB and improve the rheological properties of fermented foods. Moreover, much research has been conducted on the beneficial effects of EPS produced by LAB on modulating the gut microbiome and promoting health. The EPS, which varies widely in composition and structure, may have diverse health effects, such as glycemic control, calcium and magnesium absorption, cholesterol-lowering, anticarcinogenic, immunomodulatory, and antioxidant effects. In this article, the latest advances on structure, biosynthesis, and physicochemical properties of LAB-derived EPS are described in detail. This is followed by a summary of up-to-date methods used to detect, characterize and elucidate the structure of EPS produced by LAB. In addition, current strategies on the use of LAB-produced EPS in food products have been discussed, focusing on beneficial applications in dairy products, gluten-free bakery products, and low-fat meat products, as they positively influence the consistency, stability, and quality of the final product. Highlighting is also placed on reports of health-promoting effects, with particular emphasis on prebiotic, immunomodulatory, antioxidant, cholesterol-lowering, anti-biofilm, antimicrobial, anticancer, and drug-delivery activities.


1990 ◽  
Vol 53 (9) ◽  
pp. 793-794 ◽  
Author(s):  
HANNU J. KORKEALA ◽  
PIA M. MÄKELÄ ◽  
HANNU L. SUOMINEN

The minimum, optimum, and maximum growth temperatures of ropy slime-producing lactic acid bacteria able to spoil vacuum-packed cooked meat products were determined on MRS-agar with temperature-gradient incubator GradiplateR W10. The minimum growth temperatures of slime-producing lactobacilli and Leuconostoc mesenteroides strain D1 were below −1°C and 4°C, respectively. The low minimum growth temperature allows these bacteria to compete with other bacteria in meat processing plants and in meat products causing ropiness problems. The maximum growth temperatures varied between 36.6–39.8°C. The maximum growth temperature of lactobacilli seemed to be an unstable character. Single lactobacilli colonies were able to grow above the actual maximum growth temperature, which is determined as the edge of continuous growth of the bacteria. The significance of this phenomenon needs further study.


1994 ◽  
Vol 41 (2) ◽  
pp. 108-115 ◽  
Author(s):  
Takeo KATO ◽  
Umeyuki DOI ◽  
Yukiko YONEYAMA ◽  
Masayuki SUGIMOTO ◽  
Ryo NAKAMURA

1920 ◽  
Vol 3 (2) ◽  
pp. 143-155 ◽  
Author(s):  
P.G. Heineman

1997 ◽  
Vol 44 (12) ◽  
pp. 855-861 ◽  
Author(s):  
Takashi SAMESHIMA ◽  
Kazuko TAKESHITA ◽  
Masanobu AKIMOTO ◽  
Hiroyuki YAMANAKA ◽  
Tameo MIKI ◽  
...  

2011 ◽  
Vol 28 (7) ◽  
pp. 1308-1315 ◽  
Author(s):  
Kaihei Oki ◽  
Arun Kumar Rai ◽  
Sumie Sato ◽  
Koichi Watanabe ◽  
Jyoti Prakash Tamang

1972 ◽  
Vol 35 (9) ◽  
pp. 514-523 ◽  
Author(s):  
Han's Riemann ◽  
W. H. Lee ◽  
C. Genigeorgis

Clostridium botulinum and Staphylococcus aureus are naturally occurring contaminants in semi-preserved meat products. They can be inhibited by (a) storage below 3 C, (b) 10% sodium chloride (brine concentration), (c) pH values below 4.5, or (d) proper combinations of these factors. However, most meat products do not have the pH values and brine concentrations required to completely inhibit C. botulinum and S. aureus and there is always a risk of temperature abuse. Improved safety can be achieved by adding 1% or more glucose to the product. The glucose will, in the event of temperature abuse, generally be fermented to lactic acid by the indigenous microflora in the product. As a result, the pH value drops to a level at which the brine concentration is sufficient to inhibit C. botulinum and S. aureus. A better approach to safety is to add, together with glucose, a radiation-killed preparation of lactic acid bacteria, e.g., Pediococcus cerevisiae. Such preparations cause a rapid decline in pH only when the product is exposed to a high temperature, and they are stable during storage of meat products. Addition of irradiated lactic acid bacteria to meat products has not yet been officially approved. Another way to improve the safety of semi-preserved meat is to add sufficient glucono-delta-lactone to reduce the initial pH of the product to a level at which the salt concentration is inhibitory. Use of larger amounts of glucono-delta-lactone may result in flavor and color problems even when the meat product is kept at refrigeration temperatures.


2005 ◽  
Vol 2005 ◽  
pp. 94-94
Author(s):  
N. Thanantong ◽  
W. Wattanakul ◽  
K. Hillman ◽  
S. Edwards ◽  
O. Sparagano

Lactic acid bacteria (LAB) consist of many genera, which contain numerous bacterial species. The LAB are Gram-positive, non-spore forming micro-organisms and typically give negative results to the catalase test (Stiles and Holzapfel, 1997). The current classification of LAB combines both phenotypic properties and genotypic examination. Phenotypic studies use the cell wall compositions (mainly for Bifidobacteria), protein fingerprinting which analyse the total soluble cytoplasmic proteins, and the patterns of certain isoenzymes. The gold-standard molecular method to identify LAB is DNA-DNA homology analysis, and molecular methods using specific genetic material patterns of LAB are increasingly being applied as an identification tool. The objective of this study was to develop potential specific oligonucleotide probes for the macro-array identification of LAB.


2004 ◽  
Vol 22 (SI - Chem. Reactions in Foods V) ◽  
pp. S303-S305 ◽  
Author(s):  
O. Krejčová ◽  
E. Šviráková ◽  
J. Dobiáš ◽  
M. Plocková

Active packaging systems based on the application of packaging materials with incorporated and/or immobilized antimicrobial agents provides one of promising trends in food processing. The object of this work was to test the effect of polyethylene (LDPE) packaging film treated with lacquer containing 5% (w/w) Nisaplin<sup>®</sup> on the growth of lactic acid bacteria, aerobic sporeforming bacteria, Bacillus cereus and on the changes of total count of bacteria in packaged meat products and processed cheese. Peaces of cheese in contact with nisin treated film were stored at 21°C for 0, 7, and 28 days. The obtained results confirmed significant inhibitory effect of such packaging system against aerobic sporeforming bacteria, when the decrease of above mentioned bacteria contamination up to four logarithmic cycles were determined. In contact with sliced salami the significant decrease of total bacteria as well as lactic acid bacteria counts were found. During storage of packaged salami for two weeks at 5°C the total bacteria count on the surface of product in contact with the package dropped by more than one logarithmic cycles, present lactic bacteria were inhibited by more than two logarithmic cycles.


2008 ◽  
Vol 71 (3) ◽  
pp. 629-633 ◽  
Author(s):  
K. M. GAILUNAS ◽  
K. E. MATAK ◽  
R. R. BOYER ◽  
C. Z. ALVARADO ◽  
R. C. WILLIAMS ◽  
...  

Ready-to-eat meat products have been implicated in several foodborne listeriosis outbreaks. Microbial contamination of these products can occur after thermal processing when products are chilled in salt brines. The objective of this study was to evaluate UV radiation on the inactivation of Listeria monocytogenes and lactic acid bacteria in a model brine chiller system. Two concentrations of brine (7.9% [wt/wt] or 13.2% [wt/wt]) were inoculated with a ~6.0 log CFU/ml cocktail of L. monocytogenes or lactic acid bacteria and passed through a UV treatment system for 60 min. Three replications of each bacteria-and-brine combination were performed and resulted in at least a 4.5-log reduction in microbial numbers in all treated brines after exposure to UV light. Bacterial populations were significantly reduced after 5 min of exposure to UV light in the model brine chiller compared with the control, which received no UV light exposure (P &lt; 0.05). The maximum rate of inactivation for both microorganisms in treated brines occurred between minutes 1 and 15 of UV exposure. Results indicate that in-line treatment of chill brines with UV light reduces the number of L. monocytogenes and lactic acid bacteria.


Sign in / Sign up

Export Citation Format

Share Document