Deep-sea lebensspuren: remarks on some echiuran traces in the Porcupine Seabight, northeast Atlantic

1989 ◽  
Vol 36 (6) ◽  
pp. 975-982 ◽  
Author(s):  
Jean de Vaugelas
2010 ◽  
Vol 68 (2) ◽  
pp. 281-289 ◽  
Author(s):  
Imants G. Priede ◽  
Jasmin A. Godbold ◽  
Tomasz Niedzielski ◽  
Martin A. Collins ◽  
David M. Bailey ◽  
...  

Abstract Priede, I. G., Godbold, J. A., Niedzielski, T., Collins, M. A., Bailey, D. M., Gordon, J. D. M., and Zuur, A. F. 2011. A review of the spatial extent of fishery effects and species vulnerability of the deep-sea demersal fish assemblage of the Porcupine Seabight, Northeast Atlantic Ocean (ICES Subarea VII). – ICES Journal of Marine Science, 68: 281–289. We review information from scientific trawl surveys carried out between 1977 and 2002 in the Porcupine Seabight and Abyssal Plain area of the Northeast Atlantic (240–4865 m water depth). Since the late 1980s, commercial bottom-trawl fisheries targeting mainly roundnose grenadier (Coryphaenoides rupestris), black scabbardfish (Aphanopus carbo), and orange roughy (Hoplostethus atlanticus) have been operating at depths of 500–1500 m, intersecting the depth ranges of 77 demersal fish species that would therefore be vulnerable to fishery effects. Comparisons of trawls pre-1989 and post-1997 indicate a significant decrease in total abundance of demersal fish down to 2500 m. Detailed analyses of the 15 most-abundant species showed that nine species with depth ranges within the commercial fishing depth have decreased in abundance. Other species were either not affected (Bathypterois dubius) or only affected at the shallow end of their range (Coryphaenoides guentheri). Species with a minimum depth of occurrence >1500 m (Coryphaenoides armatus and Coryphaenoides leptolepis) increased in abundance over part of their depth range. Decreases in abundance are probably caused by commercial fishing activities, an effect that is transmitted downslope by removal of fish at the shallow end of their depth range, resulting in declines at the deeper end of the depth range. The estimated fishery area is ca. 52 000 km2, but the potential impact probably extends to ca. 142 000 km2 and to many non-target species.


Zootaxa ◽  
2017 ◽  
Vol 4347 (1) ◽  
pp. 1 ◽  
Author(s):  
ÁLVARO L. PEÑA CANTERO ◽  
TAMMY HORTON

The deep-sea benthic hydroid fauna remains poorly known, in part because of less frequent sampling than the shelf fauna, in part owing to the immense study area, and partly also because available samples have been little studied by experts. In order to correct this, deep-sea benthic hydroid material from the modern Discovery Collections has been studied. Samples come from localities in the North-East Atlantic including the Porcupine Seabight, Porcupine Abyssal Plain, Rockall Trough, Rockall Bank, and the Mid-Atlantic Ridge. Sixteen species belonging to 12 families and 16 genera were found. Leptothecata are clearly dominant, being represented by 14 species; the remaining species belong to Anthoathecata. Lafoeidae and Tiarannidae are the most diverse families with three species each; the remaining families being represented by a single species. The low species diversity is remarkable at the generic level, with each genus being represented by a single species. Hydroid occurrence is low: twelve species were found in ≤ 9% of stations; Amphinema biscayana has the highest occurrence (27% of stations). Fifteen species were recorded in the Porcupine Seabight, two in the Rockall Trough, one at Rockall Bank, one on the Porcupine Abyssal Plain, and two at the Mid-Atlantic Ridge. The known bathymetric range for a third of the species is extended; the increase is particularly noteworthy in Amphinema biscayana, Acryptolaria crassicaulis, Clytia gigantea and Schizotricha profunda. Two distinct bathymetric groups are recognized: strictly deep-sea inhabitants and eurybathic species. Most species are globally distributed, some are widely distributed in the Atlantic, and others are limited to the North Atlantic or the Northeast Atlantic. 


2009 ◽  
Vol 66 (9) ◽  
pp. 2013-2025 ◽  
Author(s):  
P. Durán Muñoz ◽  
M. Sayago-Gil ◽  
J. Cristobo ◽  
S. Parra ◽  
A. Serrano ◽  
...  

Abstract Durán Muñoz, P., Sayago-Gil, M., Cristobo, J., Parra, S., Serrano, A., Díaz del Rio, V., Patrocinio, T., Sacau, M., Murillo, F. J., Palomino, D., and Fernández-Salas, L. M. 2009. Seabed mapping for selecting cold-water coral protection areas on Hatton Bank, Northeast Atlantic. – ICES Journal of Marine Science, 66: 2013–2025. Research into vulnerable marine ecosystems (VMEs) on the high seas and the impacts of bottom fishing and ad hoc management measures are high priority today thanks to UN General Assembly Resolution 61/105. An interdisciplinary methodology (specifically designed for selecting cold-water coral protection areas) and a case study focused on the Hatton Bank (NE Atlantic) are presented. This interdisciplinary approach, developed under the ECOVUL/ARPA project, was based on conventional fisheries science, geomorphology, benthic ecology, and sedimentology. It contributes to defining practical criteria for identifying VMEs, to improving knowledge of their distribution off Europe's continental shelf, and to providing advice on negative fishing impacts and habitat protection. The approach was used to identify the bottom-trawl deep-sea fishery footprint on the western slope of Hatton Bank, to map the main fishing grounds and related deep-sea habitats (1000–1500 m deep), and to study the interactions between fisheries and cold-water corals. The results lead to a proposal to close the outcrop area (4645 km2) located on the western slope of Hatton Bank as a conservation measure for cold-water corals.


2018 ◽  
Vol 111 (3) ◽  
pp. 561-572 ◽  
Author(s):  
Robin Fentimen ◽  
Andres Rüggeberg ◽  
Aaron Lim ◽  
Akram El Kateb ◽  
Anneleen Foubert ◽  
...  

Author(s):  
A. L. Rice ◽  
D. S. M. Billett ◽  
J. Fry ◽  
A. W. G. John ◽  
R. S. Lampitt ◽  
...  

SynopsisEvidence has accumulated over the past twenty years to suggest that the deep-sea environment is not as constant as was at one time thought, but exhibits temporal variations related to the seasonally in the overlying surface waters. Recent results from deep-moored sediment traps suggest that this coupling is mediated through the sedimentation of organic material, while observations in the Porcupine Seabight indicate that in this region, at least, there is a major and rapid seasonal deposition of aggregated phytodetritus to the sea-floor at slope and abyssal depths.This paper summarises the results of the Porcupine Seabight studies over the past five years or so, using time-lapse sea-bed photography and microscopic, microbiological and chemical analyses of samples of phytodetritus and of the underlying sediment. The data are to some extent equivocal, but they suggest that the seasonal deposition is a regular and dramatic phenomenon and that the material undergoes relatively little degradation during its passage through the water column. The mechanisms leading to the aggregation of the phytodetritus have not been identified, and it is not yet known whether the phenomenon is geographically widespread nor whether it is of significance to the deep-living mid-water and benthic communities.


1996 ◽  
Vol 131 (1-2) ◽  
pp. 21-46 ◽  
Author(s):  
Shirley A. van Kreveld ◽  
Michael Knappertsbusch ◽  
Janneke Ottens ◽  
Gerald M. Ganssen ◽  
Jan E. van Hinte

Sign in / Sign up

Export Citation Format

Share Document