Simulation and non-linear stage of the electrostatic waves observed during the AMPTE lithium release in the solar wind

1988 ◽  
Vol 8 (1) ◽  
pp. 35-38 ◽  
Author(s):  
N. Omidi ◽  
T.Z. Ma ◽  
K. Quest ◽  
M. Ashour-Abdalia ◽  
D. Gurnett ◽  
...  
2008 ◽  
Author(s):  
D. A. Gurnett ◽  
W. S. Kurth ◽  
L. F. Burlaga ◽  
M. H. Acuna ◽  
N. F. Ness ◽  
...  

1971 ◽  
Vol 6 (1) ◽  
pp. 53-72 ◽  
Author(s):  
J. J. Galloway ◽  
H. Kim

In this paper, the coupled-mode equations and coupling coefficients for three-wave interaction are derived by a Lagrangian approach for a general medium. A derivation of the Low Lagrangian for a warm plasma is then given, which avoids certain problems associated with the original analysis. An application of the Lagrangian method is made to interaction between collinearly-propagating electrostatic waves, and a coupling coefficient is derived which agrees with a previous result obtained by direct expansion of the non-linear equations. The paper serves primarily to present and demonstrate a conceptually useful and efficient theoretical approach to non-linear wave interactions.


2015 ◽  
Vol 5 (1) ◽  
pp. 51-56 ◽  
Author(s):  
M. Tsizh ◽  
B. Novosyadlyj

We investigate the non-linear evolution of spherical density and velocity perturbations of dark matter and dark energy in the expanding Universe. For this we have used the conservation and Einstein equations to describe the evolution of gravitationally coupled inhomogeneities of dark matter, dark energy and radiation from the linear stage in the early Universe to the non-linear stage at the current epoch. A simple method of numerical integration of the system of non-linear differential equations for evolution of the central part of halo is proposed. The results are presented for the halo of cluster (k=2 Mpc-1) and supercluster scales (k=0.2 Mpc-1) and show that a quintessential scalar field dark energy with a low value of effective speed of sound cs<0.1 can have a notable impact on the formation of large-scale structures in the expanding Universe.


2021 ◽  
Author(s):  
Ahmad Lalti ◽  
Yuri Khotyaintsev ◽  
Daniel Graham ◽  
Andris Vaivad ◽  
Andreas Johlander

&lt;p&gt;Energy dissipation at collisionless shocks is still an open question. Wave particle interactions are believed to be at the heart of it, but the exact details are still to be figured out. One type of waves that is known to be an efficient dissipator of solar wind kinetic energy are electrostatic waves in the shock ramp, such as ion acoustic waves with frequency around the ion plasma frequency or Bernstein waves with frequency around the electron cyclotron frequency and its harmonics. The electric field of such waves is typically larger than 100 mV/m, large enough to disturb particle dynamics. In this study we use the magnetospheric multiscale (MMS) spacecraft, to investigate the source and evolution of electrostatic waves in the shock ramp of quasi-perpendicular super-critical shocks, and study their effect on solar wind thermalization.&lt;/p&gt;


1980 ◽  
Vol 91 ◽  
pp. 143-146
Author(s):  
M. Dobrowolny ◽  
A. Mangeney ◽  
P.L. Veltri

The observations of MHD turbulence in the solar wind indicate that this is in a state characterized, to a good degree by the absence of non linear interactions. It is argued that this is a general property of incompressible MHD turbulence in a magnetized plasma.


2000 ◽  
Vol 7 (3/4) ◽  
pp. 151-158 ◽  
Author(s):  
G. Lapenta ◽  
J. U. Brackbill

Abstract. Simulations in three dimensions of a Harris current sheet with mass ratio, mi/me = 180, and current sheet thickness, pi/L = 0.5, suggest the existence of a linearly unstable oblique mode, which is independent from either the drift-kink or the tearing instability. The new oblique mode causes reconnection independently from the tearing mode. During the initial linear stage, the system is unstable to the tearing mode and the drift kink mode, with growth rates that are accurately described by existing linear theories. How-ever, oblique modes are also linearly unstable, but with smaller growth rates than either the tearing or the drift-kink mode. The non-linear stage is first reached by the drift-kink mode, which alters the initial equilibrium and leads to a change in the growth rates of the tearing and oblique modes. In the non-linear stage, the resulting changes in magnetic topology are incompatible with a pure tearing mode. The oblique mode is shown to introduce a helical structure into the magnetic field lines.


Sign in / Sign up

Export Citation Format

Share Document