The lipid phosphatidyl-D-myo-inositol-4,5-bisphosphate [PI(4,5)P2] is a master regulator of plasma membrane (PM) function. It engages effector proteins that regulate diverse traffic, transport, signaling and cytoskeletal processes that define PM structure and function. How a single class of lipid molecules independently regulate so many parallel processes remains an open question. We tested the hypothesis that spatially segregated pools of PI(4,5)P2 are associated with, and thus reserved for regulation of, different functional complexes in the PM. The mobility of PI(4,5)P2 in the membrane was measured using lipid biosensors by single particle tracking photoactivation localization microscopy (sptPALM). We found that PI(4,5)P2, and several other classes of inner PM lipids, diffuse rapidly at approximately 0.3 microns squared per second with largely Brownian motion, although they spend approximately a third of their time diffusing much more slowly. Surprisingly, areas of the PM occupied by PI(4,5)P2-dependent complexes, such endoplasmic-reticulum:PM contact sites, clathrin-coated structures, and several actin cytoskeletal elements including focal adhesions, did not cause a change in PI(4,5)P2 lateral mobility. Only the spectrin and septin cytoskeletons were observed to produce a slowing of PI(4,5)P2 diffusion. We conclude that even structures with high densities of PI(4,5)P2-engaging effector proteins, such as clathrin coated pits and focal adhesions, do not corral free PI(4,5)P2, questioning a role for spatially segregated PI(4,5)P2 pools in organizing and regulating parallel PM functions.