Convergent-beam electron diffraction and X-ray diffraction characterization of strained-layer superlattices

1991 ◽  
Vol 36 (4) ◽  
pp. 375-384 ◽  
Author(s):  
X.F. Duan ◽  
K.K. Fung
Author(s):  
S. Swaminathan ◽  
S. Altynov ◽  
I. P. Jones ◽  
N. J. Zaluzec ◽  
D. M. Maher ◽  
...  

The advantages of quantitative Convergent Beam Electron Diffraction (CBED) method for x-ray structure factor determination have been reviewed by Spence. The CBED method requires accurate values of Debye-Waller (D-W) factors for the estimation of the coefficients of crystal potential of the higher order beams, Vg, the calculation of the absorption potential, V′g using the Einstein model for phonons, and finally the conversion of the fitted values of the coefficients of crystal potential, V″, to x-ray structure factors. Debye-Waller factors are conventionally determined by neutron or x-ray diffraction methods. Because of the difficulties in conducting high temperature neutron and x-ray diffraction experiments, D-W factors are rarely measured at temperatures above room temperature. Debye-Waller factors at high temperatures can be determined by Convergent Beam Electron diffraction (CBED) method using Transmission Electron Microscopy (TEM) employed with a hot stage attachment. Recently Holmestad et al. have attempted to measure the D-W factors by matching the energy-filtered Higher Order Laue Zone (HOLZ) line intensities near liquid nitrogen temperature.


1986 ◽  
Vol 69 ◽  
Author(s):  
M. E. Twigg ◽  
S. N. G. Chu ◽  
D. C. Joy ◽  
D. M. Maher ◽  
A. T. Macrander ◽  
...  

AbstractWith X-ray diffraction techniques, it is possible to routinely measure lattice parameters to several parts in 104 for macroscopic specimens. However, measurements of lattice parameter changes for quaternary (InGaAsP) device structures several microns in width are not usually feasible with X-ray diffraction techniques. Convergent Beam Electron Diffraction (CBED), which is one of the techniques available on a modern transmission electron microscope (TEM), may be sensitive to these small, localized lattice parameter changes. Unfortunately, dynamical diffraction effects prevent direct extraction of changes in the lattice parameter from CBED patterns which are obtained from high atomic number materials. For this reason, we have chosen to calibrate the relative position of CBED features with X-ray lattice parameter measurements which were obtained from planar quaternary layers grown on InP substrates. For the active quaternary region of an electro-optical device structure, it is shown that this approach may be sensitive to a relative change in the lattice parameter as small as ±2 parts in 104, which is the uncertainty in the X-ray calibration measurements.


Sign in / Sign up

Export Citation Format

Share Document