strain state
Recently Published Documents


TOTAL DOCUMENTS

3356
(FIVE YEARS 1324)

H-INDEX

30
(FIVE YEARS 6)

Author(s):  
L.K. Miroshnikova ◽  
A.Yu. Mezentsev ◽  
G.A. Kadyralieva ◽  
M.A. Perepelkin

The Zhdanovskoe copper-nickel sulfide ores deposit is located in the north-west of the Murmansk region and is a mineral raw material source for JSC «Kola MMC». The main mining method used is sublevel caving. In some areas, due to the complex shape of the ore bodies, the open stoping mining method is used which requires determining stable parameters of stopes and pillars. It is necessary to study the stress-strain state of the deposit to ensure safe mining conditions. One of the possible solutions is the modeling of the stress-strain state of rock mass using the finite element method, for example, CAE Fidesys, which is FEMbased software. The use of CAE Fidesys for solving geomechanics tasks allows creating models of individual excavation units to determine the stability of stopes and pillars, and large-scale models that include several ore bodies and areas of the host rock mass. The article considers solutions of both types of geomechanic tasks using CAE Fidesys for conditions of the Zhdanovskoe deposit.


2022 ◽  
Author(s):  
Ze'ev Reches ◽  
Nadav Wetzler

Abstract Faulting of rocks is a dominant earth process that governs small-scale fracturing, formation of tectonic plate boundaries, and earthquakes occurrence1–4. Since the 18th century, the mechanical settings for rock faulting were commonly analyzed with the Coulomb criterion5 that offers empirical, useful tools for scientific and engineering applications1,6–12. Here we revisit the processes of rock faulting by an alternative approach that incorporates elastic energy, strain-state, and three-dimensional deformation; these mechanical fundamentals are missing in Coulomb criterion. We propose that a stressed rock-body fails as two conditions are met: (1) The elastic energy generated by the loading system equals or exceeds a critical energy intensity that is required for the faulting process; (2) The internal strain of the stressed rock-body due to slip and dilation along the developing faults equals the strain-state created by the loading system to maintain physical continuity13,14. Our simulations reveal that meeting these energy and strain conditions requires an orthorhombic, polymodal fault geometry that is similar to natural and experimental fault systems15–20. The application of our formulation to hundreds of rock-mechanics experiments11,21–28 provides a new, comprehensive benchmark for rock-faulting.


2022 ◽  
Vol 19 (4) ◽  
pp. 22-33
Author(s):  
N. M. Kvashnin ◽  
I. S. Bondar ◽  
M. Ya. Kvashnin

Reliability of transport artificial structures and transit of trains at sanctioned speed should be provided with the necessary and sufficient load-bearing capacity, strength, rigidity, and stability of engineering structures.The objective of this work was to substantiate the possibility of using well-known methods for controlling the stress-strain state of structures using automated systems of structural health monitoring of bridge spans.It is extremely important regarding operation of transport artificial structures designed according to the standards of the first half of the 20th century.Under these conditions, the experimental determination of the stress-strain state of bearing structures of bridges becomes the most important component of the task of a comprehensive assessment of physical wear and tear as well as of operational reliability of the structures. Monitoring the structural health and technical condition of bridges and planning of timely measures aimed at the repair, strengthening or reconstruction of spans will extend their service life and ensure safety during operation.Maximum permissible deflections of spans under a movable temporary vertical load have been revealed since to ensure smooth movement of vehicles it is necessary to control horizontal longitudinal and transverse displacements of the top of the bridge piers, as well as vertical settlements.The paper suggests methods of interpreting data measured by inclinometers and electric strain gauges, tensiometers to use them in an automated system for monitoring the structural health of railway bridges. The method of strain measurement is described in detail in the proposed options for installing resistance strain gauges on structures to measure tensile-compression stresses and longitudinal forces due to a temporary vertical load.Monitoring the technical condition of bridge structures, using the methods for measuring deflections and deformations proposed by the authors in this article, will make it possible to assess the change in bearing capacity of the structure over the entire period of operation. The study used regulations and experience of the Russian Federation and the Republic of Kazakhstan. 


2022 ◽  
Vol 906 ◽  
pp. 93-98
Author(s):  
Tigran Dadayan ◽  
Lusine Karapetyan

Currently, the main type of connection between a steel column and a reinforced concrete foundation is a steel base, which is often economically unprofitable due to its size, number or diameter of anchor bolts. Not only in Armenia, but also in most countries, a steel base is the main type of connection between a steel column and a reinforced concrete foundation. The usage of other types of connections is associated with both new calculation methods and technological problems. The possibility of computation and design of the connection of a steel column with a reinforced concrete foundation in seismically active regions using shear studs is considered in this work, a reinforced concrete section with longitudinal reinforcement is used for this type of connection which ensures a smooth transfer of forces from the column to the foundation. Based on the example of the connection of a single-story industrial building column shows the change in the stress-strain state of the connection under axial force and bending moments for seismic regions. Not only the feature and construction technology of the connection considered in the work, but also proposes a calculation method with future possibility of its subsequent inclusion in the building codes of the Republic of Armenia.


2022 ◽  
Vol 25 (6) ◽  
pp. 696-707
Author(s):  
S. A. Zaides ◽  
Quan Minh Ho ◽  
Nghia Duc Mai

This paper aims to determine the effect of the sector radius of a workpiece-deforming tool on the stress-strain state in the center of elastoplastic deformation and residual stresses in the hardened zone of the surface layer of cylindrical workpieces. A mathematical model of local loading was constructed using the finite element method and AN-SYS software. This model was used to determine the values of temporary and residual stresses and deformations, as well as the depth of plastic zone, depending on the sector radius of the working tool. The simulation results showed that, under the same loading of a cylindrical surface, working tools with different sector radii create different maximum tempo-rary and residual stresses. An assessment of the stress state was carried out for situations when the surface layer of a product is treated by workpiece-deforming tools with a different shape of the working edge. It was shown that, compared to a flat tool, a decrease in the radius of the working sector from 125 to 25 mm leads to an increase in the maximum temporary and residual stresses by 1.2–1.5 times, while the plastic zone depth increases by 1.5–2.4 times. The use of a working tool with a flat surface for hardening a cylindrical workpiece ensures minimal temporary residual stresses, com-pared to those produced by a working tool with a curved surface. A decrease in the radius of the working sector leads to an increase in temporary residual stresses by 2–7%. The plastic zone depth ranges from 1.65 to 2.55 mm when chang-ing the sector radius of the working tool.


2022 ◽  
Vol 12 (2) ◽  
pp. 685
Author(s):  
Zeljko Kos ◽  
Yevhenii Klymenko ◽  
Irina Karpiuk ◽  
Iryna Grynyova

This work presents a proposed engineering method for calculating the bearing capacity of the supporting sections of continuous monolithic reinforced concrete tape beams, which combine pressed or driven reinforced concrete piles into a single foundation design. According to the mechanics of reinforced concrete, it is recommended to consider the grillage to be a continuous reinforced concrete beam, which, as a rule, collapses according to the punching scheme above the middle support (pile caps), with the possible formation of a plastic hinge above it. The justification for the proposed method included the results of experimental studies, comparisons of the experimental tensile shear force with the results of calculations according to the design standards of developed countries, and modeling of the stress-strain state of the continuous beam grillage in the extreme span and above the middle support-pile adverse transverse load in the form of concentrated forces. The work is important, as it reveals the physical essence of the phenomenon and significantly clarifies the physical model of the operation of inclined sections over the middle support. The authors assessed the influence of design factors in continuous research elements, and on the basis of this, the work of the investigated elements under a transverse load was simulated in the Lira-Sapr PC to clarify the stress-strain state and confirm the scheme of their destruction adopted in the physical model by the finite element method in nonlinear formulation. Based on the analysis and comparison of the experimental and simulation results, a design model was proposed for bearing capacity near the supporting sections of continuous reinforced concrete beams and high grillages that is capable of adequately determining their strength.


2022 ◽  
Vol 1049 ◽  
pp. 85-95
Author(s):  
Violetta Kuznetsova ◽  
Maria Barkova ◽  
Alexandr Zhukov ◽  
Igor Kartsan

We consider the creation of a mathematical model describing the effect of corrosive hydrogen environment on the stress state of a hollow spherical shell made of titanium alloy grade VT1-0, the load is evenly distributed throughout the shell. The solution of the problem in practice was carried out by two-step method of sequential perturbation of parameters using MatLab and Maple programs. To solve the system of solving differential equations the finite difference method was applied. The solution of the diffusion equation of the aggressive hydrogen medium has been considered and the obtained solution has been compared with the results of the classical theory which does not take into account the aggressive effect of the corrosive medium.


Sign in / Sign up

Export Citation Format

Share Document