Occurrence of three forms of glycogen phosphorylase and flight-induced enzyme activation in fat body of the american cockroach, Periplaneta americana

Author(s):  
Wil J.A. Van Marrewuk ◽  
Aloys Th.M. Van Den Broek ◽  
Ad M.Th. Beenakkers
1988 ◽  
Vol 43 (1-2) ◽  
pp. 108-116 ◽  
Author(s):  
Gerd Gäde

The corpora cardiaca of the cockroach Nauphoeta cinerea contain a hypertrehalosaemic hormone (HTH) which is chemically characterized as a blocked decapeptide. The synthetic HTH shows the same chromatographic behaviour as the material isolated from corpora cardiaca. The synthetic peptide causes hypertrehalosaemia and fat body glycogen phosphorylase-activation in N. cinerea as well as in the American cockroach, Periplaneta americana in a dose-dependent fashion. It is calculated that one gland from N. cinerea stores about 50 pmol of HTH. Roughly 10% of the total available hormone in the gland is released in vitro during exposure to an elevated potassium saline which causes depolarization of the neurosecretory cells


1991 ◽  
Vol 46 (1-2) ◽  
pp. 149-162 ◽  
Author(s):  
Gerd Gäde

The presence of endogenous phosphorylase kinase and phosphorylase phosphatase in crude extracts of fat bodies from the cockroaches Nauphoeta cinerea and Periplaneta americana is demonstrated in vitro by activation/inactivation of glycogen phosphorylase under appropriate conditions. Fractionation of fat body extracts of both cockroach species on an anion-exchange medium results in the elution of three peaks with phosphorylase activity. According to their AMP dependency these activity peaks are designated as phosphorylase b (inactive without AMP), phosphorylase ab (active without AMP, but several stimulated with AMP) and phosphorylase a (active without AMP). It is shown chromatographically that incubating crude extracts of fat bodies from both cockroaches, under conditions where the phosphorylase kinase is active, results in all phosphorylase b being converted to the ab- or a-form , whereas under conditions where the phosphorylase phosphatase is active all phophorylase a is converted to the ab- or b-form . Endogenous phosphorylase kinase of N. cinerea crude fat body extract can convert vertebrate phosphorylase b into the a-form , and, conversely, vertebrate muscle p hosphorylase kinase and phosphorylase phosphatase, respectively, are able to convert partially purified N. cinerea phosphorylase aborb and the ab- und a-form , respectively. In resting cockroaches most of the phosphorylase activity resides in the b-form and only a small fraction (10% ) in the a-form , whereas between 26% (N . cinerea) and 35% (P. americana) occurs in the ab-form . Injection of endogenous hypertrehalosaemic peptides into N. cinerea (the decapeptide Bld-HrTH ) or P. americana (the two octapeptides Pea-CAH -I and II) causes interconversion of phosphorylase; after injection, mainly (60% ) phosphorylase a is present, while 25% and 15% exists in the ab- und b-form , respectively. Purification of the three phosphorylase forms from N. cinerea is achieved by anion-exchange chromatography on DEAE-Sephacel followed by affinity chromatography on AMP-Sepharose. The final specific activities are 2.1, 6.9 and 27.2 U /mg protein for the a-, ab- und b-form . The molecular mass of the active molecules on gel filtration is between 173,000 and 177,000, and SDS gel electrophoresis reveals a subunit mass of 87,100, suggesting a homodimeric structure for all three form s. Kinetic studies show hyperbolic saturation curves for the substrates glycogen and Pi respectively, with Kᴍ-values of 0.021, 0.019 and 0.073% for glycogen and 8.3, 6.3 and 17.9 mᴍ for Pi (a-, ab- and b-form ). Phosphorylase a exhibits a more or less hyperbolic response to AMP and needs 70 |iM A M P for m axim al stim ulation. The kinetics for the ab- and b-form s are sigm oidal and maximal activities are displayed at about 3 mᴍ (half-maximum activation as calculated from Hill plots are 55 and 280 μᴍ for the ab- und b-form , respectively). Caffeine is a strong inhibitor of the b-form , but has only a slight inhibiting effect (10 -20 % ) on the ab- and a-form in the presence of AMP.


1956 ◽  
Vol 34 (1) ◽  
pp. 68-74 ◽  
Author(s):  
Ann D. Anderson ◽  
Ralph B. March

Carbonic anhydrase activity has been demonstrated in vitro in preparations of the head, fat body, and gut of the American cockroach, Periplaneta americana (L.), and in the adult housefly, Musca domestica L. The insect factor, which is soluble in aqueous media and can be separated from the particulate cell fragments of insect tissue homogenates is heat labile and sensitive to cyanide inactivation. It is strongly inhibited by sulphanilamide, p-aminoethylphenyl-sulphonamide, and p-chlorphenylsulphonamide. No inhibition has been found with N-substituted sulphonamides or with any of the organic insecticides examined, including DDT, lindane, dieldrin, nicotine, rotenone, pyrethrins, and para-oxon. Sensitivity of carbonic anhydrase to sulphonamides having an intact—SO2NH2 group is also characteristic of mammalian preparations. The data indicate that inhibition of insect carbonic anhydrase cannot be an important factor in the mode of action of DDT or other organic insecticides.


1985 ◽  
Vol 40 (9-10) ◽  
pp. 670-676 ◽  
Author(s):  
Gerd Gäde

Abstract Although crude extracts of cockroach (Periplaneta amencana) corpora cardiaca have been shown previously to affect the activity of adenylate cyclase and phosphorylase, we demonstrate in the present study for the first time that low concentrations (0.5 to 5 pmol) of the synthetic myoactive peptides. M I and M II, also affect these systems; these myoactive peptides are identical to the hypertrehalosaemic hormones I and II, and cause an increase in the concentration of the second messenger cyclic AMP in the fat body.In addition, both octapeptides activate fat body glycogen phosphorylase and promote breakdown of fat body glycogen. Both peptides increase the levels to haemolymph carbohydrate in a dose-dependent manner.


1990 ◽  
Vol 269 (2) ◽  
pp. 309-313 ◽  
Author(s):  
G Gäde ◽  
H Wilps ◽  
R Kellner

A hypertrehalosaemic neuropeptide from the corpora cardiaca of the blowfly Phormia terraenovae has been isolated by reversed-phase h.p.l.c., and its primary structure was determined by pulsed-liquid phase sequencing employing Edman chemistry after enzymically deblocking the N-terminal pyroglutamate residue. The C-terminus was also blocked, as indicated by the lack of digestion when the peptide was incubated with carboxypeptidase A. The octapeptide has the sequence pGlu-Leu-Thr-Phe-Ser-Pro-Asp-Trp-NH2 and is clearly defined as a novel member of the RPCH/AKH (red-pigment-concentrating hormone/adipokinetic hormone) family of peptides. It is the first charged member of this family to be found. The synthetic peptide causes an increase in the haemolymph carbohydrate concentration in a dose-dependent fashion in blowflies and therefore is named ‘Phormia terraenovae hypertrehalosaemic hormone’ (Pht-HrTH). In addition, receptors in the fat-body of the American cockroach (Periplaneta americana) recognize the peptide, resulting in carbohydrate elevation in the blood. However, fat-body receptors of the migratory locust (Locusta migratoria) do not recognize this charged molecule, and thus no lipid mobilization is observed in this species.


Sign in / Sign up

Export Citation Format

Share Document