locusta migratoria
Recently Published Documents


TOTAL DOCUMENTS

1606
(FIVE YEARS 157)

H-INDEX

63
(FIVE YEARS 5)

2022 ◽  
Vol 23 (2) ◽  
pp. 586
Author(s):  
Jun-Xiu Wang ◽  
En-Bo Ma ◽  
Jian-Zhen Zhang ◽  
Shu-Ping Xing

Tissue homeostasis is critical for maintaining organ shape, size, and function. The condition is regulated by the balance between the generation of new cells and the loss of senescent cells, and it involves many factors and mechanisms. The midgut, an important part of the intestinal tract, is responsible for digestion and nutrient absorption in insects. LmDDX47, the ortholog of DEAD-box helicase 47 from Locusta migratoria, is indispensable for sustaining a normal midgut in the nymphs. However, the underlying cellular and molecular mechanisms remain to be elucidated. In this study, LmDDX47 knockdown resulted in atrophy of the midgut and gastric cecum in both nymph and adult locusts. After LmDDX47 knockdown, the number of regenerative and columnar cells in the midgut was significantly reduced, and cell death was induced in columnar tissue. LmDDX47 was localized to the nucleolus; this was consistent with the reduction in 18S rRNA synthesis in the LmDDX47 knockdown group. In addition, the acetylation and crotonylation levels of midgut proteins were significantly increased. Therefore, LmDDX47 could be a key regulator of midgut homeostasis, regulating 18S rRNA synthesis as well as protein acetylation and crotonylation in the migratory locust.


2022 ◽  
Author(s):  
Xuekai Shi ◽  
Xiaojian Liu ◽  
Anastasia M.W. Cooper ◽  
Kristopher Silver ◽  
Hans Merzendorfer ◽  
...  

2022 ◽  
Author(s):  
Xuekai Shi ◽  
Xiaojian Liu ◽  
Kristopher Silver ◽  
Kun Yan Zhu ◽  
Jianzhen Zhang

2021 ◽  
Author(s):  
Lamia M. El-Samad ◽  
Mohamed S. El-Gerbed ◽  
Hanaa S. Hussein ◽  
Justin Flaven-Pouchon ◽  
Abeer El Wakil ◽  
...  

Abstract Neonicotinoids are modern insecticides widely used in agriculture worldwide. Their impact on target (nervous system) and non-target (midgut) tissues has been well studied in beneficial insects including honeybees. However, their effects on pest insects on the field are comparably rarely described. Here, we have studied the effects of the neonicotinoid imidacloprid on the midgut of the pest insect Locusta migratoria caught in the field. We found that in the midgut of imidacloprid-exposed locusts the activity of enzymes involved in reactive oxygen metabolism was perturbed. By contrast, the activity of P450 enzymes that have been shown to be activated in a detoxification response and that were also reported to produce reactive oxygen species was elevated. Probably as a consequence, markers of oxidative stress including protein carbonylation and lipid peroxidation accumulated in midgut samples of these locusts. Histological analyses revealed that their midgut epithelium is disorganized and that the brush border of the epithelial cells is markedly reduced. Indeed, microvilli are significantly shorter, misshapen and possibly non-functional in imidacloprid-treated locusts. We hypothesize that imidacloprid induces oxidative stress in the locust midgut, thereby changing the shape of midgut epithelial cells and probably in turn compromising their physiological function. Presumably, these effects reduce the survival rate of imidacloprid-treated locusts and the damage they cause in the field.


2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Olukayode James Adelaja ◽  
Adeolu Taiwo Ande ◽  
Gafar Deji Abdulraheem ◽  
Isaac Ayanfe Oluwakorode ◽  
Olushola Abel Oladipo ◽  
...  

Abstract Background The preponderant use of wireless telecommunication in the twenty-first century has enabled ease and efficient communication and a pervasive occurrence of electromagnetic fields (EMFs) that has significantly impacted the ecosystem. This study looks at the effect of radiations from wireless telecommunication EMF on the distribution, diversity and abundance of some insects in Nigeria. The study was undertaken in Ilorin, Kwara State, which is located in the Guinea Savannah belt of Nigeria. The chosen choice of study area was one with a telecommunication mast devoid of residential and human interference within a 10 km radius. Five sampling stations were selected around the mast and a control station. EMR intensity levels and pollinating insect number were monitored daily for 22 weeks using an acoustimeter and malaise traps. Collected insects were identified morphologically using appropriate keys. Results The mean electromagnetic radiation (EMR) intensity was significantly (P < 0.05) highest (1.58 ± 1.52 V/m) at sampling station B, and there was an increase in EMR intensity as the radius reduced around the mast. A total of 1878 insects were recovered from the study with the dominant species in terms of abundance of insects collected from the study being Musca domestica (0.39) followed by Apis mellifera (0.31) and Locusta migratoria (0.30), while the least dominant species Tetramorium caespitum (0.23). Conclusions Indeed, EMR intensity has an effect on the distribution, diversity and abundance of insects and there is a need to reduce the number of masts in use in the environment by encouraging telecommunication service providers to jointly use the same mast in an area for broadcast.


Author(s):  
Hitomi Seike ◽  
Shinji Nagata

Abstract Body-color in insects changes according to the living environment and physiological stresses possibly involved in endocrine factors. To date, three predominant bioactive peptides, Corazonin, Elevenin, and pigment-dispersing factor (PDF) have been illuminated to be involved in the body-color in insects and crustaceans. Here, we examined the possibilities that these three factors would contribute to body-color changes via melanization in the two-spotted cricket, Gryllus bimaculatus, whose body color changes according to population density drastically. Quantitative analyses revealed that the higher transcriptional levels of Corazonin and Elevenin in the crowded-conditioned crickets, whereas the transcriptional level of PDF was higher in the isolated-conditioned crickets. However, the body color was not changed by knockdown of Corazonin, Elevenin, and PDF by RNA interference. The present data indicated that coloration mechanisms in G. bimaculatus is differently controlled from the previous observation in Locusta migratoria, a closely related orthopteran species.


Insects ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 951
Author(s):  
Stella Bergmann ◽  
Jan-Phillipp Gerhards ◽  
Anne Schmitz ◽  
Stefanie C. Becker ◽  
Michael Stern

Similar to vertebrates, insects are exposed to a broad variety of pathogens. The innate insect immune system provides several response mechanisms such as phagocytosis, melanization, and the synthesis of antimicrobial or cytotoxic compounds. The cytotoxic nitric oxide (NO), which is also a neurotransmitter, is involved in the response to bacterial infections in various insects but has rarely been shown to be actually produced in hemocytes. We quantified the NO production in hemocytes of Locusta migratoria challenged with diverse immune stimuli by immunolabeling the by-product of NO synthesis, citrulline. Whereas in untreated adult locusts less than 5% of circulating hemocytes were citrulline-positive, the proportion rose to over 40% after 24 hours post injection of heat-inactivated bacteria. Hemocytes surrounded and melanized bacteria in locust nymphs by forming capsules. Such sessile hemocytes also produced NO. As in other insect species, activated hemocytes were found dorsally, close to the heart. In addition, we frequently observed citrulline-positive hemocytes and capsules near the ventral nerve cord. Neurites in the CNS of sterile locust embryos responded with elevation of the second messenger cGMP after contact with purified adult NO-producing hemocytes as revealed by immunofluorescence. We suggest that hemocytes can mediate a response in the CNS of an infected animal via the NO/cGMP signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document