Experiments with an instrumented twin-screw extruder using a single-step granulation/extrusion process

1993 ◽  
Vol 94 (1-3) ◽  
pp. 49-58 ◽  
Author(s):  
Peter Kleinebudde ◽  
Hans Lindner
2021 ◽  
pp. 108201322110692
Author(s):  
Nispa Seetapan ◽  
Bootsrapa Leelawat ◽  
Nattawut Limparyoon ◽  
Rattana Yooberg

Rice noodles have been manufactured in the food industry using different extrusion methods, such as traditional and modern extrusions, which affect the noodle structure and qualities. Therefore, the effects of the extrusion process on qualities of rice noodles using the same blend of rice flour and crosslinked starch were evaluated. In this study, a capillary rheometer was used as an alternative approach to simulate the traditional extrusion method in which the noodles are obtained by continuously pressing the pregelatinized noodle dough through a die. For modern extrusion, a twin-screw extruder was employed to obtain the noodles in a one-step process. The optimal range of moisture content used in the formulation was studied. Upon cooking, the noodles showed a decrease in cooking time and cooking loss with increasing moisture content in the formulation. All cooked noodles showed comparable tensile strength, but those extruded by a twin-screw extruder had substantially greater elongation. Scanning electron micrographs revealed that the noodles prepared using the extruder had a denser starch matrix, while those obtained from a capillary rheometer showed the aggregation of starch fragments relevant to the existence of starch gelatinization endotherm from differential scanning calorimetry. This indicated that the extrusion process using the twin-screw extruder provided a more uniform starch transformation, i.e., more starch granule disruption and gelatinization, thus giving the noodles a more coherent structure and better extensibility after cooking. The obtained results suggested that different thermomechanical processes used in the noodle industry gave the extruded rice noodles different qualities respective to their different microstructures.


2013 ◽  
Vol 658 ◽  
pp. 8-12
Author(s):  
Xuan Zhong ◽  
Xian Tao Tong ◽  
Mu Huo Yu ◽  
Hai Feng Li ◽  
Huan Li ◽  
...  

A twin-screw extruder was used to carry out the ring opening graft polymerization of L-lactide onto cellulose through reactive extrusion process. Ionic liquid (1-butyl-3-methylimidazolium chloride) [Bmim]Cl and Sn(oct)2 were used as solvent and catalyst, respectively. FTIR, TGA and XRD were used to investigate the structure, thermal stability and crystalline behavior of the reaction products. The result showed a successful ring opening polymerization of L-lactide on cellulose. Furthermore, it showed a increased crystalline degree and thermal stability after being introduced the PLLA.


Polymer ◽  
2000 ◽  
Vol 41 (9) ◽  
pp. 3395-3403 ◽  
Author(s):  
S. Jacobsen ◽  
H.G. Fritz ◽  
Ph. Degée ◽  
Ph. Dubois ◽  
R. Jérôme

2021 ◽  
Vol 22 (7) ◽  
Author(s):  
Daniel Mateo-Ortiz ◽  
Vladimir Villanueva-Lopez ◽  
Shashank Venkat Muddu ◽  
Gregory D. Doddridge ◽  
Dana Alhasson ◽  
...  

Polymers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2070 ◽  
Author(s):  
Tobias Bubmann ◽  
Andreas Seidel ◽  
Volker Altstädt

The effect of different catalysts on reactive compatibilization of 50/50 polycarbonate (PC)/polymethylmethacrylate (PMMA) blends achieved via transesterification that occurs during compounding in a twin-screw extruder was investigated on a phenomenological (optical and mechanical properties), mesoscopic (phase morphology), and molecular level (PC-graft(g)-PMMA-copolymer formation and polymer molecular weight degradation). Formation of PC-(g)-PMMA-copolymer by transesterification resulting in transparent mono-phase PC/PMMA blends with obviously improved compatibility of the two polymer constituents requires use of a suitable catalyst. As a side-effect, PC-(g)-PMMA-copolymer formation by transesterification is always accompanied by a significant simultaneous decomposition of the molecular weight (Mw) of the PC. For the first time, a colorless, transparent (mono-phase) PC/PMMA 50/50 blend was achieved by a twin-screw extrusion process that can be easily transferred into industrial scale. To achieve this milestone, 0.05 wt% of a weakly acidic phosphonium salt catalyst had to be applied. As a result of the decrease in Mw of the PC, the mechanical properties (e.g., tensile strain at break and impact strength) of the obtained blends were significantly deteriorated rather than improved as targeted by the polymer compatibilization; therefore, the produced transparent PC/PMMA blends are considered not yet technically suitable for any industrial applications. Different manufacturing process strategies that do not inherently result in PC degradation as a side effect of PC-graft(g)-PMMA-copolymer formation have to be developed to potentially achieve transparent PC/PMMA blends with a useful balance of properties. Based on the experimental observations of this study, a new mechanism of the transesterification reaction occurring during reactive compounding of PC and PMMA in the presence of the effective catalysts is proposed.


2018 ◽  
Vol 34 (3) ◽  
pp. 143-157 ◽  
Author(s):  
Anderson Thadeu Nunes ◽  
Rubens Eduardo dos Santos ◽  
Juliene Sátiro Pereira ◽  
Rafael Barbosa ◽  
José Donato Ambrósio

Waste tire rubber (WTR) supplied by a truck tire retreader were processed in an intermeshing co-rotating twin-screw extruder (ICTSE). The extrusion process evaluated the efficiency of the thermomechanical recycling in the devulcanization of WTR rubbers. Samples were prepared by varying the process parameters, the particles sizes and thermoplastics, and the latter was used as devulcanization auxiliary agents. After extrusion, samples were subjected to solvent extraction to determine the soluble fraction (SF). Subsequently, these SF were characterized by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The highest SF (29 wt%) was obtained with higher screw rotating speed and with smaller particle size. Higher SF indicated a higher degree of devulcanization. The FTIR and DSC analyses showed that natural rubber was the main rubber extracted from extruded samples. In addition, polypropylene was more effective than low-density polyethylene in the devulcanization process, promoting higher SF.


10.5219/1436 ◽  
2020 ◽  
Vol 14 ◽  
pp. 937-944
Author(s):  
Mikhailo Mushtruk ◽  
Maxim Gudzenko ◽  
Igor Palamarchuk ◽  
Volodymyr Vasyliv ◽  
Natalia Slobodyanyuk ◽  
...  

The extrusion process of oil-containing raw materials using a twin-screw extruder is becoming increasingly common in food technology. The problem of high energy costs for the implementation of this process is solved by reducing the resistance of the process mass due to the preliminary grinding of raw materials. The classical theory of extrusion is based mainly on the use of theoretical solutions of mathematical models of processes, which are simplified and allow determining integral parameters using coefficients, the preparation of which for the calculation of the corresponding processes and equipment is a rather complicated and approximate procedure. Mathematical modelling of the movement of the technological medium at the individual stages of the processing of raw materials allows us to determine the analytical dependences for the power and energy parameters of the system and to carry out their effective technical and economic evaluation. Using the methods of mathematical analysis and data processing in the MathCAD software environment, graphical dependences of the power and energy parameters of the research technical system were obtained. By increasing the density of the oil-containing raw materials, which is extruded in the research extruder by 40.5% the pressure force increases by 41%, that is, there is an almost proportional relationship between the pressure force and the density of the processed raw material. With an increase in the angular velocity of the drive shaft ω more than 8 rad.s-1, the pressure force in the research process increases sharply. With an increase in the density of raw materials, it is grinded before extrusion by 40%, the power consumption for the grinding process increases by 2.8 times for the recommended operating mode. Energy losses for pressing completely grinded raw materials are reduced by 2.52 times.


Sign in / Sign up

Export Citation Format

Share Document