thermomechanical processes
Recently Published Documents


TOTAL DOCUMENTS

128
(FIVE YEARS 31)

H-INDEX

14
(FIVE YEARS 2)

Author(s):  
Oleksii Grevtsev ◽  
Ninel Selivanova ◽  
Pavlo Popovych ◽  
Liubomyr Poberezhny ◽  
Yurii Rudyak ◽  
...  

The main objective of the study was to develop a model and analyze the thermomechanical behavior of the hub material of the vehicle brake disk. The simulation strategy was based on the solution of the three-dimensional problem of the theory of elasticity for the case of effect of external loads and temperature fields on the metal structure element of the vehicle brakes. To solve this type of task of the theory of elasticity, the differential equations of the second order were used for the first time. Adaptation of the proposed model, completed in the article, has proved the correctness of use of these equations in modeling the thermomechanical processes with determination of stresses and displacements in unevenly heated rotary cylinders of the final length. The proposed method can be applied with high efficiency in stress strain state simulation of individual parts of vehicles.


2021 ◽  
pp. 108201322110692
Author(s):  
Nispa Seetapan ◽  
Bootsrapa Leelawat ◽  
Nattawut Limparyoon ◽  
Rattana Yooberg

Rice noodles have been manufactured in the food industry using different extrusion methods, such as traditional and modern extrusions, which affect the noodle structure and qualities. Therefore, the effects of the extrusion process on qualities of rice noodles using the same blend of rice flour and crosslinked starch were evaluated. In this study, a capillary rheometer was used as an alternative approach to simulate the traditional extrusion method in which the noodles are obtained by continuously pressing the pregelatinized noodle dough through a die. For modern extrusion, a twin-screw extruder was employed to obtain the noodles in a one-step process. The optimal range of moisture content used in the formulation was studied. Upon cooking, the noodles showed a decrease in cooking time and cooking loss with increasing moisture content in the formulation. All cooked noodles showed comparable tensile strength, but those extruded by a twin-screw extruder had substantially greater elongation. Scanning electron micrographs revealed that the noodles prepared using the extruder had a denser starch matrix, while those obtained from a capillary rheometer showed the aggregation of starch fragments relevant to the existence of starch gelatinization endotherm from differential scanning calorimetry. This indicated that the extrusion process using the twin-screw extruder provided a more uniform starch transformation, i.e., more starch granule disruption and gelatinization, thus giving the noodles a more coherent structure and better extensibility after cooking. The obtained results suggested that different thermomechanical processes used in the noodle industry gave the extruded rice noodles different qualities respective to their different microstructures.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 236
Author(s):  
Yao Lin ◽  
Shan Liu ◽  
Tao Wu ◽  
Guangchun Wang

The “torsion and annealing” grain boundary modification of pure nickel wires with different diameters was carried out in this paper. The effects of torsional cycles as well as unidirectional/bidirectional torsion methods on grain boundary characteristic distribution and plasticity were investigated. The fraction of special boundaries, grain boundary characteristic distributions and grain orientations of samples with different torsion parameters were detected by electron backscatter diffraction. Hardness measurement was conducted to characterize the plasticity. Then, the relationship between micro grain boundary characteristics and macro plasticity was explored. It was found that the special boundaries, especially Σ3 boundaries, are increased after torsion and annealing and effectively broke the random boundary network. The bidirectional torsion with small torsional circulation unit was the most conducive way to improve the fraction of special boundaries. The experiments also showed that there was a good linear correlation between the fraction of special boundaries and hardness. The plasticization mechanism was that plenty of grains with Σ3 boundaries, [001] orientations and small Taylor factor were generated in the thermomechanical processes. Meanwhile, the special boundaries broke the random boundary network. Therefore, the material was able to achieve greater plastic deformation. Moreover, the mechanism of torsion and annealing on the plasticity of pure nickel was illustrated, which provides theoretical guidance for the pre-plasticization of nickel workpieces.


Author(s):  
Oleksiy Yakimov ◽  
Natalia Klimenko ◽  
Kateryna Kirkopulo ◽  
Andrey Pavlyshko ◽  
Sergyi Uminsky ◽  
...  

Development of modem power engineering follows the line of continuous increase in speed, coefficient of corrosive action and capacity of units. Gears and reducers are responsible parts of modem machinery and occupy an important place in the domestic power engineering construction. Durability and wear resistance of gears, apart from the design factors, also depends on the technological methods of treatment. The final stage of production of such wheels is the operation of gear grinding. In the process of gear grinding in a thin surface ball there are complex thermomechanical processes. As a result of short-time heating to high temperatures, structural transformations, burns, and in some cases even micro- and macro-thicknesses occur in such a surface bail. In addition, there are cases of making tooth wheels with adjacent defects grinding (for example, the appearance of the surface of the ball teeth of large tensioning forces), which reduces the life of the work, and in some cases causes a breakdown of the teeth in operating conditions. Development of effective measures to ensure the quality of the surface of the ball on the operation of grinding baggage in part depends on the possibility of predicting (or calculation) of temperatures and residual loads on the depth of the cemented teeth ball. The method of calculation of internal surplus Toads occurring during grinding of wheels with cemented steels is suggested. On the basis of the performed calculations and experiments the ways to improve the quality of production of working surfaces of gears, which are used in the wits of thermal and nuclear power plants are suggested and grounded.


Author(s):  
Emil Eriksson ◽  
Joel Andersson ◽  
Magnus Hörnqvist Colliander

AbstractIn alloys where carbides are the main grain boundary phase, the role of carbides during hot working is not known. Here, we address the effect of grain boundary carbides on the dynamic recrystallization during hot compression of Ni-base superalloy Haynes 282. When excluding variations from experimental factors neither stress evolution nor final microstructure indicated that carbides exerted a significant influence on the dynamic recrystallization. The carbide solvus temperature is not a critical limit during thermomechanical processes.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 605
Author(s):  
Franco Lizzi ◽  
Kashyap Pradeep ◽  
Aleksandar Stanojevic ◽  
Silvana Sommadossi ◽  
Maria Cecilia Poletti

Inconel®718 is a well-known nickel-based super-alloy used for high-temperature applications after thermomechanical processes followed by heat treatments. This work describes the evolution of the microstructure and the stresses during hot deformation of a prototype alloy named IN718WP produced by powder metallurgy with similar chemical composition to the matrix of Inconel®718. Compression tests were performed by the thermomechanical simulator Gleeble®3800 in a temperature range from 900 to 1025 °C, and strain rates scaled from 0.001 to 10 s−1. Flow curves of IN718WP showed similar features to those of Inconel®718. The relative stress softening of the IN718WP was comparable to standard alloy Inconel®718 for the highest strain rates. Large stress softening at low strain rates may be related to two phenomena: the fast recrystallization rate, and the coarsening of micropores driven by diffusion. Dynamic recrystallization grade and grain size were quantified using metallography. The recrystallization grade increased as the strain rate decreased, although showed less dependency on the temperature. Dynamic recrystallization occurred after the formation of deformation bands at strain rates above 0.1 s−1 and after the formation of subgrains when deforming at low strain rates. Recrystallized grains had a large number of sigma 3 boundaries, and their percentage increased with strain rate and temperature. The calculated apparent activation energy and strain rate exponent value were similar to those found for Inconel®718 when deforming above the solvus temperature.


Author(s):  
Petr P. Prochazka

Changes in the thermomechanical properties of fiber-reinforced concrete (FRC) exposed to fire are fundamentally affected by the type and volume fraction of fibers. Because the loss of FRC load-bearing capacity is mainly caused by structural damage, a new numerical procedure based on a modified method of discontinuous boundary elements (DBEM) is proposed, which is modified to include thermomechanical processes in concrete together with the effect of fibers. DBEM allows the reader to visually track the location and extent of material damage.


2021 ◽  
Vol 30 (4) ◽  
pp. 2680-2690
Author(s):  
Mirko Pigato ◽  
Luca Pezzato ◽  
Claudio Cason ◽  
Manuele Dabalà

AbstractThe use of grain refiners, such as iridium, in 18 kt gold alloys is a common practice in jewelry industrial applications. The use of these elements leads, however, to an increase in the costs of raw materials and greater attention during the solidification phases and during the refining and recycling of alloys is required. This work aims to demonstrate that through the optimization of thermo-mechanical processes, it is possible to obtain a result comparable to that obtained with refiner in terms of workability, mechanical and aesthetic properties and corrosion behavior. The study focused on evaluating the grain growth in annealing processes after plastic deformation, also examining the casting phase and the effect of the different cooling rates. The samples, after the different thermo-mechanical treatments, were characterized in terms of microstructure, grain size and micro-hardness comparing the results with the ones of an iridium-containing alloy. The results showed that with proper optimization of annealing time is possible to obtain, without grain refiners, gold alloys with properties similar to ones obtained with Iridium as a grain refiner.


2021 ◽  
Vol 15 (2) ◽  
pp. 897-907
Author(s):  
Ian E. McDowell ◽  
Neil F. Humphrey ◽  
Joel T. Harper ◽  
Toby W. Meierbachtol

Abstract. Temperature sensors installed in a grid of nine full-depth boreholes drilled in the southwestern ablation zone of the Greenland Ice Sheet recorded cooling in discrete sections of ice over time within the lowest third of the ice column in most boreholes. Rates of temperature change outpace cooling expected from vertical conduction alone. Additionally, observed temperature profiles deviate significantly from the site-average thermal profile that is shaped by all thermomechanical processes upstream. These deviations imply recent, localized changes to the basal thermal state in the boreholes. Although numerous heat sources exist to add energy and warm ice as it moves from the central divide towards the margin such as strain heat from internal deformation, latent heat from refreezing meltwater, and the conduction of geothermal heat across the ice–bedrock interface, identifying heat sinks proves more difficult. After eliminating possible mechanisms that could cause cooling, we find that the observed cooling is a manifestation of previous warming in near-basal ice. Thermal decay after latent heat is released from freezing water in basal crevasses is the most likely mechanism resulting in the transient evolution of temperature and the vertical thermal structure observed at our site. We argue basal crevasses are a viable englacial heat source in the basal ice of Greenland's ablation zone and may have a controlling influence on the temperature structure of the near-basal ice.


Sign in / Sign up

Export Citation Format

Share Document