Dirac Fields in Gravitation and Nonabelian Gauge Theory

Author(s):  
J.A. Smoller
1986 ◽  
Vol 11 (3) ◽  
pp. 189-197 ◽  
Author(s):  
R. P. Zaikov

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
T. Bhanja ◽  
D. Shukla ◽  
R. P. Malik

Within the framework of augmented version of the superfield approach to Becchi-Rouet-Stora-Tyutin (BRST) formalism, we derive the superspace unitary operator (and its Hermitian conjugate) in the context of four (3 + 1)-dimensional (4D) interacting non-Abelian 1-form gauge theory with Dirac fields. The ordinary 4D non-Abelian theory, defined on the flat 4D Minkowski spacetime manifold, is generalized onto a (4, 2)-dimensional supermanifold which is parameterized by the spacetime bosonic coordinatesxμ(withμ=0,1,2,3) and a pair of Grassmannian variables (θ,θ-) which satisfy the standard relationships:θ2=θ-2=0and  θθ-+θ-θ=0. Various consequences of the application of the above superspace (SUSP) unitary operator (and its Hermitian conjugate) are discussed. In particular, we obtain the results of the application of horizontality condition (HC) and gauge-invariant restriction (GIR) in the language of the above SUSP operators. One of the novel results of our present investigation is the derivation of explicit expressions for the SUSP unitary operator (and its Hermitian conjugate) without imposing any Hermitian conjugation condition fromoutsideon the parameters and (super)fields of the supersymmetric version of our 4D interacting non-Abelian 1-form theory with Dirac fields.


Sign in / Sign up

Export Citation Format

Share Document