Cell Preservation Technology

2011 ◽  
pp. 179-190
Author(s):  
J.G. Baust ◽  
W.L. Corwin ◽  
J.M. Baust
Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3638-3638
Author(s):  
Fern Tablin ◽  
Minke Tang ◽  
Naomi J. Walker ◽  
John H. Crowe

Abstract Maintenance of intracellular pH, a critical cellular function, is required for generation of proton gradients and platelet response to agonist. Previously, we have demonstrated that freeze-dried rehydrated platelets are able to respond to agonists generate a rise in intracellular calcium (Auh et al. 2004 Calcium mobilization in freeze-dried platelets. Cell Preservation Technology in press) and maintain normal membrane and protein secondary structure (Wolkers et al. 2002 Towards a clinical application of freeze-dried platelets. Cell Preservation Technology 1:175–188). As part of our ongoing studies of trehalose loaded freeze-dried rehydrated human platelets we examined their ability to maintain their intracellular pH. Platelet proton regulation is achieved through the Na-H exchanger (NHE1) which is dependent on the concentration of extracellular sodium. Freeze-dried and fresh control human platelets were loaded with the pH ratio dye bis-carboxyfluorescein acetomethyl ester (BCECF-AM), washed over a Sepharose 2B column and examined by fluorescence spectroscopy. Fresh and freeze-dried rehydrated human platelets maintained virtually identical resting intracellular pH, 7.273 +/− 0.015, and 7.270 +/− 0.034 respectively. Both cell types responded to increased extracellular sodium by increasing their pH in a virtually identical manner. The addition of 0.5U/ml thrombin (in the presence of 135 mM NaCl) resulted in an initial acidification and subsequent alkalinzation of both fresh and freeze-dried rehydrated cells. Prior to the addition of thrombin both cell populations had an [pH]i of 6.9, while after thrombin stimulation the pH rose to 7.012 for fresh cells and 7.001 for freeze-dried rehydrated cells. Thrombin stimulation in the absence of extracellular sodium resulted in a significant acidification of both cell populations to a final pH of 6.6 for fresh cells and 6.7 for freeze-dried rehydrated cells. Specific inhibition of the NHE1 transporter by 5-(N-methyl-N-isobutyl) amiloride (MIA) completely abolished the response of all cells to increasing concentrations of sodium. In the parallel control experiment both freeze-dried and fresh cells acidified to pH 6.2 and incubated with 135mM NaCl responded by generating a rise in intracellular pH to 7.1. These results demonstrate that freeze-dried rehydrated platelets are able to maintain normal pH homeostasis and respond to agonist in a specific manner. Studies funded by DARPA.


2011 ◽  
pp. 154-165
Author(s):  
John G. Baust ◽  
William L. Corwin ◽  
John M. Baust

Forum Journal ◽  
2018 ◽  
Vol 32 (1) ◽  
pp. 3-4
Author(s):  
Priya Chhaya ◽  
Reina Murray

2002 ◽  
Vol 1 (3) ◽  
pp. 149-150
Author(s):  
John G. Baust

2014 ◽  
Vol 548-549 ◽  
pp. 1790-1794
Author(s):  
Xia Zhao ◽  
You Ping Ding ◽  
Xiu Yan Zhang

In order to analyze the effect of heat preservation, the heat preservation technology of detail structure, such as decorative lines of external walls, edge beam and edge column, windows, balcony and laying position of air conditioner, have been well treated under the system of thin plastered external wall based on EPS. Moreover, the technical-economy benefits of detail structure treatments have been analyzed by comparing with those without detail structure treatment. The results show that better heat preservation and economy benefits would be created by detail structure treatment, which could provide good reference for similar construction process.


2014 ◽  
Vol 2014 ◽  
pp. 1-18 ◽  
Author(s):  
Irais Sánchez-Ortega ◽  
Blanca E. García-Almendárez ◽  
Eva María Santos-López ◽  
Aldo Amaro-Reyes ◽  
J. Eleazar Barboza-Corona ◽  
...  

Animal origin foods are widely distributed and consumed around the world due to their high nutrients availability but may also provide a suitable environment for growth of pathogenic and spoilage microorganisms. Nowadays consumers demand high quality food with an extended shelf life without chemical additives. Edible films and coatings (EFC) added with natural antimicrobials are a promising preservation technology for raw and processed meats because they provide good barrier against spoilage and pathogenic microorganisms. This review gathers updated research reported over the last ten years related to antimicrobial EFC applied to meat and meat products. In addition, the films gas barrier properties contribute to extended shelf life because physicochemical changes, such as color, texture, and moisture, may be significantly minimized. The effectiveness showed by different types of antimicrobial EFC depends on meat source, polymer used, film barrier properties, target microorganism, antimicrobial substance properties, and storage conditions. The perspective of this technology includes tailoring of coating procedures to meet industry requirements and shelf life increase of meat and meat products to ensure quality and safety without changes in sensory characteristics.


Sign in / Sign up

Export Citation Format

Share Document