scholarly journals Antimicrobial Edible Films and Coatings for Meat and Meat Products Preservation

2014 ◽  
Vol 2014 ◽  
pp. 1-18 ◽  
Author(s):  
Irais Sánchez-Ortega ◽  
Blanca E. García-Almendárez ◽  
Eva María Santos-López ◽  
Aldo Amaro-Reyes ◽  
J. Eleazar Barboza-Corona ◽  
...  

Animal origin foods are widely distributed and consumed around the world due to their high nutrients availability but may also provide a suitable environment for growth of pathogenic and spoilage microorganisms. Nowadays consumers demand high quality food with an extended shelf life without chemical additives. Edible films and coatings (EFC) added with natural antimicrobials are a promising preservation technology for raw and processed meats because they provide good barrier against spoilage and pathogenic microorganisms. This review gathers updated research reported over the last ten years related to antimicrobial EFC applied to meat and meat products. In addition, the films gas barrier properties contribute to extended shelf life because physicochemical changes, such as color, texture, and moisture, may be significantly minimized. The effectiveness showed by different types of antimicrobial EFC depends on meat source, polymer used, film barrier properties, target microorganism, antimicrobial substance properties, and storage conditions. The perspective of this technology includes tailoring of coating procedures to meet industry requirements and shelf life increase of meat and meat products to ensure quality and safety without changes in sensory characteristics.

Author(s):  
Paul Alexandru POPESCU ◽  
Vlad Ioan POPA ◽  
Amalia Carmen MITELUT ◽  
Elisabeta Elena POPA ◽  
Mihaela Cristina DRAGHICI ◽  
...  

Nowadays, consumer’s awareness regarding edible and functional coatings used in the food industry is increasing because of their novel approach on prolonging the shelf life of agri-food products that during storage, are subjected to a loss of quality attributes, which inevitably contributes to food waste. In order to combat this problem, functional coatings and edible films can be used because of their capability to extend the shelf life of food products by providing gas and water barrier properties and delaying microbial spoilage. The aim of this study is to review the literature and outline the most recent findings and developments regarding edible and functional coatings used in the food industry. Functional and edible coatings can be applied on different types of food products, like meat products, different kinds of cheeses and fruits and vegetables. mainly because they help maintain the organoleptic proprieties, such as aroma, taste and appearance and prologue their shelf life. The new concept of functional coatings and edible packaging has significantly influenced the marketing and safety aspects of food products and further studies and developments are needed to improve these technologies.


2007 ◽  
Vol 70 (2) ◽  
pp. 378-385 ◽  
Author(s):  
ALEXANDRA LIANOU ◽  
IFIGENIA GEORNARAS ◽  
PATRICIA A. KENDALL ◽  
KEITH E. BELK ◽  
JOHN A. SCANGA ◽  
...  

Commercial cured ham formulated with or without potassium lactate and sodium diacetate was inoculated with Listeria monocytogenes and stored to simulate conditions of processing, retail, and home storage. The ham was sliced, inoculated with a 10-strain composite of L. monocytogenes (1 to 2 log CFU/cm2), vacuum packaged, and stored at 4°C to simulate contamination following lethality treatment at processing (first shelf life). After 10, 20, 35, and 60 days of storage, packages were opened, samples were tested, and bags with remaining slices were reclosed with rubber bands. At the same times, portions of original product (stored at 4°C in original processing bags) were sliced, inoculated, and packaged in delicatessen bags to simulate contamination during slicing at retail (second shelf life). Aerobic storage of both sets of packages at 7°C for 12 days was used to reflect domestic storage conditions (home storage). L. monocytogenes populations were lower (P < 0.05) during storage in ham formulated with lactate-diacetate than in product without antimicrobials under both contamination scenarios. Inoculation of ham without lactate-diacetate allowed prolific growth of L. monocytogenes in vacuum packages during the first shelf life and was the worst case contamination scenario with respect to pathogen numbers encountered during home storage. Under the second shelf life contamination scenario, mean growth rates of the organism during home storage ranged from 0.32 to 0.45 and from 0.18 to 0.25 log CFU/cm2/day for ham without and with lactate-diacetate, respectively, and significant increases in pathogen numbers (P < 0.05) were generally observed after 4 and 8 days of storage, respectively. Regardless of contamination scenario, 12-day home storage of product without lactate-diacetate resulted in similar pathogen populations (6.0 to 6.9 log CFU/cm2)(P ≥ 0.05). In ham containing lactate-diacetate, similar counts were found during the home storage experiment under both contamination scenarios, and only in 60-day-old product did samples from the first shelf life have higher (P < 0.05) pathogen numbers than those found in samples from the second shelf life. These results should be useful in risk assessments and for the establishment of “sell by” and “consume by” date labels for refrigerated ready-to-eat meat products.


2015 ◽  
Vol 43 (2) ◽  
pp. 302-312 ◽  
Author(s):  
Dan Cristian VODNAR ◽  
Oana Lelia POP ◽  
Francisc Vasile DULF ◽  
Carmen SOCACIU

In this article, several applications of materials in food packaging and food safety are reviewed, including: polymers as high barrier packaging materials, natural substances as potent antimicrobial agents, and the efficiency of antimicrobial films in food industry. Active antimicrobial food packaging systems are supposed not only to passively protect food products against environmental factors, but also to inhibit or retard microbial growth on the food surface, extending the shelf life of products. Edible films can be incorporated into conventional food packaging systems with a dual purpose as an edible and antimicrobial component. Applications of antimicrobial films to fruits, vegetables and meat products have received increasing interest because films can serve as carriers for various natural antimicrobials that can maintain fresh quality, extend product shelf life and reduce the risk of pathogen growth. In the future, eco-friendly antimicrobial packaging films are promising food packaging materials because its biodegradability provides sustainable development for a modern community.In this article, several applications of materials in food packaging and food safety are reviewed, including: polymers as high barrier packaging materials, natural substances as potent antimicrobial agents, and the efficiency of antimicrobial films in food industry. Active antimicrobial food packaging systems are supposed not only to passively protect food products against environmental factors, but also to inhibit or retard microbial growth on the food surface, extending the shelf life of products. Edible films can be incorporated into conventional food packaging systems with a dual purpose as an edible and antimicrobial component. Applications of antimicrobial films to fruits, vegetables and meat products have received increasing interest because films can serve as carriers for various natural antimicrobials that can maintain fresh quality, extend product shelf life and reduce the risk of pathogen growth. In the future, eco-friendly antimicrobial packaging films are promising food packaging materials because its biodegradability provides sustainable development for modern community.


2021 ◽  
Vol 2 (2) ◽  
pp. 400-428
Author(s):  
Luis Miguel Anaya-Esparza ◽  
Zuamí Villagrán-de la Mora ◽  
Noé Rodríguez-Barajas ◽  
José Martín Ruvalcaba-Gómez ◽  
Laura Elena Iñiguez-Muñoz ◽  
...  

Functionalization of polysaccharide-based packaging incorporating inorganic nanoparticles for food preservation is an active research area. This review summarizes the use of polysaccharide-based materials functionalized with inorganic nanoparticles (TiO2, ZnO, Ag, SiO2, Al2O3, Fe2O3, Zr, MgO, halloysite, and montmorillonite) to develop hybrid packaging for fruit, vegetables, meat (lamb, minced, pork, and poultry), mushrooms, cheese, eggs, and Ginkgo biloba seeds preservation. Their effects on quality parameters and shelf life are also discussed. In general, treated fruit, vegetables, mushrooms, and G. biloba seeds markedly increased their shelf life without significant changes in their sensory attributes, associated with a slowdown effect in the ripening process (respiration rate) due to the excellent gas exchange and barrier properties that effectively prevented dehydration, weight loss, enzymatic browning, microbial infections by spoilage and foodborne pathogenic bacteria, and mildew apparition in comparison with uncoated or polysaccharide-coated samples. Similarly, hybrid packaging showed protective effects to preserve meat products, cheese, and eggs by preventing microbial infections and lipid peroxidation, extending the food product’s shelf life without changes in their sensory attributes. According to the evidence, polysaccharide-hybrid packaging can preserve the quality parameters of different food products. However, further studies are needed to guarantee the safe implementation of these organic–inorganic packaging materials in the food industry.


Molecules ◽  
2020 ◽  
Vol 25 (22) ◽  
pp. 5260
Author(s):  
Daniel Rico ◽  
Irene Albertos ◽  
Oscar Martinez-Alvarez ◽  
M. Elvira Lopez-Caballero ◽  
Ana Belen Martin-Diana

The growing interest from consumers toward healthy and nutritious products and their benefits for health has increased the consumption of whole and processed fish. One of the main problems of fish is the short shelf life, especially when it is processed as in the case of burgers. The use of edible coating is an interesting strategy to extend the quality and safety of the product, reducing the need for artificial preservatives. This study evaluated the use of chitosan-based edible film formulated with sea fennel plant and sea fennel extracts. The analyses showed than the use of edible film extended the shelf life of fish burgers regardless of the incorporation of sea fennel mainly associated to the gas barrier properties and selective permeability of the film applied to the fish surface. The incorporation of sea fennel in the films did not produce any antimicrobial enhancement, although sea fennel (mostly extract) produced a better pH and enhanced the antioxidant properties and lipid oxidation of fish burgers. However, sensory analyses showed than fish burgers coated with sea fennel film plant had better acceptability than those with sea fennel extracts, probably due to the better odour and colour of the whole plant during storage. The study showed that the use of sea fennel plant at 12.5% extended the shelf life of fish burgers using a safe and clean label strategy.


2021 ◽  
Vol 8 (2) ◽  
pp. 36-40
Author(s):  
Bethsua Mendoza ◽  
 Edna Maria Hernandez ◽  
Leyri Desireth Romo ◽  
Apolonio Vargas ◽  
Jorge Alvez Cervantes ◽  
...  

The apple is a climacteric fruit, characterized by having a long post-harvest life in optimal storage conditions, in addition to various nutritional benefits. In Mexico, it has become common to sell apple by piece and ready to be consumed, each piece after being washed and disinfected, is protected with a polyurethane net and a low-density polyethylene plastic film, which contributes to the increase in the generation of solid waste and environmental pollution. The main objective of this work was to evaluate the effectiveness of edible films based on chayotextle starch and pectin with nopal mucilage, to preserve the physicochemical, microbiological and sensory characteristics of apples stored in refrigeration (4-6°C). Two types of films were made: T1: chayotextle starch (4%), glycerol (2%); T2: pectin (1%), nopal mucilage (0.5%), glycerol (30% w / v); These were determined the permeability to water vapor (T1: 1.317x10-12; T2: 8.854 g s- 1 Pa-1 m -1) and oxygen permeability (T1: 4.444x10-14, T2: 5.87 gm s -1 Pa-1 m-2). The shelf-life study in apples showed that both the edible films and the plastic material maintained the physicochemical (pH), sensory, rheological (Hardness) and microbiological (fungi and yeast, mesophilic aerobic and total coliform) characteristics of the apples for 40 days


2016 ◽  
Vol 46 (1) ◽  
pp. 82-95 ◽  
Author(s):  
Arvind Soni ◽  
G Kandeepan ◽  
S. K. Mendiratta ◽  
Vivek Shukla ◽  
Ashish Kumar

Purpose – The purpose of this paper was to develop an antimicrobial edible film coated with essential oils for packaging application with characterization of its physicochemical properties. Livestock products especially meat products need special packaging system for protection. The most well-known packaging materials are polyethylene or co-polymer-based materials which have led to serious ecological problems due to their non-biodegradability and non-renewable nature. There has been a growing interest for edible films in recent years trying to reduce the amount of wastes, capable of protecting the food once the primary packaging is open, and because of public concerns about environmental protection. Various kinds of antimicrobial substances can also be incorporated into edible films to improve their functionality, as these substances could limit or prevent microbial growth on food surface. Design/methodology/approach – Biopolymers such as carrageenan and carboxymethylcellulose and their various combinations were tried to develop an edible film. The levels of antimicrobial substances such as oregano and thyme essential oils were standardized on the basis of their minimal inhibitory concentration against Escherichia coli, Salmonella pullorum, Staphylococcus aureus and Listeria monocytogenes. Standardized edible film coated with standardized concentration of essential oil was examined for different physicochemical properties and compared with edible film without essential oil. Findings – In total, 1.5 per cent (w/v) solution of carrageenan was found best suited biopolymer for edible film formation on the basis of thickness, transparency and elongation ability. Combined concentration of oregano (0.02 per cent) and thyme (0.03 per cent) essential oils were found to be best suited for coating the edible film as antimicrobial application. Research limitations/implications – Future research may benefit from the present attempt in evaluating the potency of easily available agricultural by produces for preparation of economically viable edible film incorporated with various natural biopreservatives in combination for the enhancement of shelf life. Originality/value – Antimicrobial packaging for enhancing the quality and shelf life of stored meat products offers great scope for further research in this field. Moreover, the literature pertaining to the application of edible films containing biopreservative for chicken meat products is very limited.


2021 ◽  
Vol In Press (In Press) ◽  
Author(s):  
Sayed Mahdi Hossaeini Marashi ◽  
Mohammad Hashemi ◽  
Enayat Berizi ◽  
Mojtaba Raeisi ◽  
Seyyed Mohammad Ali Noori

: Food spoilage is one of the major elements of food insecurity that has acquired significant attention over recent decades due to global human population growth. Several studies have investigated increasing shelf life of food products using natural and environmentally friendly compounds. Whey protein (WP) can be an important additive material because it is well-known for its high value of nutrition and well characteristics for the formation of edible films. Furthermore, natural bioactive compounds have been incorporated with WP-based films to confer their antioxidant and antimicrobial activities. Herein, nanotechnology has been effectively potentiated the antimicrobial and antioxidant properties of WP films. A wide range of bioactive agents has been embedded in the WP films, such as essential oils (EOs), TiO2, nano-clay, and even lactic acid bacteria. The current paper reviews the antioxidant and antimicrobial effects of different types of WP films and their applications in food products. This study also discussed the impact of WP films on shelf life, chemical and microbiological quality indices of meats, processed meats, poultry meat products, and fish.


Nutrients ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 1062
Author(s):  
Casandra Madrigal ◽  
María José Soto-Méndez ◽  
Ángela Hernández-Ruiz ◽  
Teresa Valero ◽  
Federico Lara Villoslada ◽  
...  

Diet in the first years of life is an important factor in growth and development. Dietary protein is a critical macronutrient that provides both essential and nonessential amino acids required for sustaining all body functions and procedures, providing the structural basis to maintain life and healthy development and growth in children. In this study, our aim was to describe the total protein intake, type and food sources of protein, the adequacy to the Population Reference Intake (PRI) for protein by the European Food Safety Authority (EFSA), and the Recommended Dietary Allowance (RDA) by the Institute of Medicine (IoM). Furthermore, we analyzed whether the consumption of dairy products (including regular milk, dairy products, or adapted milk formulas) is associated with nutrient adequacy and the contribution of protein to diet and whole dietary profile in the two cohorts of the EsNuPI (in English, Nutritional Study in the Spanish Pediatric Population) study; one cohort was representative of the Spanish population from one to < 10 years old (n = 707) (Spanish reference cohort, SRS) who reported consuming all kinds of milk and one was a cohort of the same age who reported consuming adapted milk over the last year (including follow-on formula, growing up milk, toddler’s milk, and enriched and fortified milks) (n = 741) (adapted milk consumers cohort, AMS). The children of both cohorts had a high contribution from protein to total energy intake (16.79% SRS and 15.63% AMS) and a high total protein intake (60.89 g/day SRS and 53.43 g/day AMS). We observed that protein intake in Spanish children aged one to < 10 years old was above the European and international recommendations, as well as the recommended percentages for energy intakes. The main protein sources were milk and dairy products (28% SRS and 29% AMS) and meat and meat products (27% SRS and 26% AMS), followed by cereals (16% SRS and 15% AMS), fish and shellfish (8% in both cohorts), eggs (5% SRS and 6% AMS), and legumes (4% in both cohorts). In our study population, protein intake was mainly from an animal origin (meat and meat products, milk and dairy products, fish and shellfish, and eggs) rather than from a plant origin (cereals and legumes). Future studies should investigate the long-term effect of dietary protein in early childhood on growth and body composition, and whether high protein intake affects health later in life.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Seyed Mohammad Davachi ◽  
Neethu Pottackal ◽  
Hooman Torabi ◽  
Alireza Abbaspourrad

AbstractThere is growing interest among the public and scientific community toward the use of probiotics to potentially restore the composition of the gut microbiome. With the aim of preparing eco-friendly probiotic edible films, we explored the addition of probiotics to the seed mucilage films of quince, flax, and basil. These mucilages are natural and compatible blends of different polysaccharides that have demonstrated medical benefits. All three seed mucilage films exhibited high moisture retention regardless of the presence of probiotics, which is needed to help preserve the moisture/freshness of food. Films from flax and quince mucilage were found to be more thermally stable and mechanically robust with higher elastic moduli and elongation at break than basil mucilage films. These films effectively protected fruits against UV light, maintaining the probiotics viability and inactivation rate during storage. Coated fruits and vegetables retained their freshness longer than uncoated produce, while quince-based probiotic films showed the best mechanical, physical, morphological and bacterial viability. This is the first report of the development, characterization and production of 100% natural mucilage-based probiotic edible coatings with enhanced barrier properties for food preservation applications containing probiotics.


Sign in / Sign up

Export Citation Format

Share Document