Low-cost system in the analysis of the recovery of mobility through inertial navigation techniques and virtual reality

Author(s):  
Wilver Auccahuasi ◽  
Mónica Diaz ◽  
Fernando Sernaque ◽  
Edward Flores ◽  
Justiniano Aybar ◽  
...  
Author(s):  
I. Boukerch ◽  
B. Takarli ◽  
K. Saidi ◽  
M. Karich ◽  
M. Meguenni

Abstract. The virtual visit is a simulation of reality that allows virtually changing time or placing. Unlike this, virtual reality offers the possibility to associate the real world with the virtual world, while ensuring interactivity and an improvement in prospecting the reality. One of the most used form of virtual reality is the 360° panoramic imagery and video, currently in the market we can find many providers of panoramic cameras, going from costly professional cameras to the low cost consumer grade cameras. In addition, many software providers offers the virtual tours creation and visualisation, to our knowledge, only google street view offers full mapping functionalities, but the data capture and collection is an opaque operation. Generally, smartphones are equipped with positioning capabilities, based on sensors like gyroscopes, accelerometers, magnetometer used as compass and GPS, the integration of this data allow the estimation of the pose.This paper discusses the creation of an interactive virtual reality with 360° panoramic images with the possibility of automating its acquisition and integration in mapping environment by using smartphone positioning methods, while the panoramic images are taken using costumer grade camera, which composes a low cost system for acquiring and diffusing panoramic virtual tours map. The developed solution is a dynamic web interface using several open source libraries and programming tools.


2007 ◽  
Vol 40 (11) ◽  
pp. 53
Author(s):  
BRUCE K. DIXON
Keyword(s):  
Low Cost ◽  

Author(s):  
Ramin Sattari ◽  
Stephan Barcikowski ◽  
Thomas Püster ◽  
Andreas Ostendorf ◽  
Heinz Haferkamp

2021 ◽  
Vol 1826 (1) ◽  
pp. 012082
Author(s):  
G F Bassous ◽  
R F Calili ◽  
C R H Barbosa

2020 ◽  
pp. 1-15
Author(s):  
Jorge Tadeu Fim Rosas ◽  
Francisco de Assis de Carvalho Pinto ◽  
Daniel Marçal de Queiroz ◽  
Flora Maria de Melo Villar ◽  
Rodrigo Nogueira Martins ◽  
...  

2020 ◽  
Vol 196 ◽  
pp. 105705 ◽  
Author(s):  
S. Summa ◽  
G. Tartarisco ◽  
M. Favetta ◽  
A. Buzachis ◽  
A. Romano ◽  
...  
Keyword(s):  
Low Cost ◽  

1978 ◽  
Vol 2 (1) ◽  
pp. 6
Author(s):  
Dave Oppenheim
Keyword(s):  
Low Cost ◽  

2015 ◽  
Vol 24 (4) ◽  
pp. 298-321 ◽  
Author(s):  
Ernesto de la Rubia ◽  
Antonio Diaz-Estrella

Virtual reality has become a promising field in recent decades, and its potential now seems clearer than ever. With the development of handheld devices and wireless technologies, interest in virtual reality is also increasing. Therefore, there is an accompanying interest in inertial sensors, which can provide such advantages as small size and low cost. Such sensors can also operate wirelessly and be used in an increasing number of interactive applications. An example related to virtual reality is the ability to move naturally through virtual environments. This is the objective of the real-walking navigation technique, for which a number of advantages have previously been reported in terms of presence, object searching, and collision, among other concerns. In this article, we address the use of foot-mounted inertial sensors to achieve real-walking navigation in a wireless virtual reality system. First, an overall description of the problem is presented. Then, specific difficulties are identified, and a corresponding technique is proposed to overcome each: tracking of foot movements; determination of the user’s position; percentage estimation of the gait cycle, including oscillating movements of the head; stabilization of the velocity of the point of view; and synchronization of head and body yaw angles. Finally, a preliminary evaluation of the system is conducted in which data and comments from participants were collected.


Sign in / Sign up

Export Citation Format

Share Document