Flow and movement of gaseous pollutants in the subsurface: CO2 dynamics at a carbon capture and storage site

2022 ◽  
pp. 1-20
Author(s):  
Shachi ◽  
Anuradha Garg
2020 ◽  
Vol 52 (1) ◽  
pp. 163-171 ◽  
Author(s):  
Jon G. Gluyas ◽  
Usman Bagudu

AbstractThe Endurance, four-way, dip-closed structure in UK Blocks 42/25 and 43/21 occurs over a salt swell diapir and within Triassic and younger strata. The Lower Triassic Bunter Sandstone Formation reservoir within the structure was tested twice for natural gas (in 1970 and 1990) but both wells were dry. The reservoir is both thick and high quality and, as such, an excellent candidate site for subsurface CO2 storage.In 2013 a consortium led by National Grid Carbon drilled an appraisal well on the structure and undertook an injection test ahead of a planned development of Endurance as the first bespoke storage site on the UK Continental Shelf with an expected injection rate of 2.68 × 106 t of dense phase CO2 each year for 20 years. The site was not developed following the UK Government's removal of financial support for carbon capture and storage (CCS) demonstration projects, but it is hoped with the recent March 2020 Budget that government support for CCS may now be back on track.


Solid Earth ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 1707-1715 ◽  
Author(s):  
Mark Wilkinson ◽  
Debbie Polson

Abstract. Carbon capture and storage (CCS) is a potentially important technology for the mitigation of industrial CO2 emissions. However, the majority of the subsurface storage capacity is in saline aquifers, for which there is relatively little information. Published estimates of the potential storage capacity of such formations, based on limited data, often give no indication of the uncertainty, despite there being substantial uncertainty associated with the data used to calculate such estimates. Here, we test the hypothesis that the uncertainty in such estimates is a significant proportion of the estimated storage capacity, and should hence be evaluated as a part of any assessment. Using only publicly available data, a group of 13 experts independently estimated the storage capacity of seven regional saline aquifers. The experts produced a wide range of estimates for each aquifer due to a combination of using different published values for some variables and differences in their judgements of the aquifer properties such as area and thickness. The range of storage estimates produced by the experts shows that there is significant uncertainty in such estimates; in particular, the experts' range does not capture the highest possible capacity estimates. This means that by not accounting for uncertainty, such regional estimates may underestimate the true storage capacity. The result is applicable to single values of storage capacity of regional potential but not to detailed studies of a single storage site.


2017 ◽  
Vol 114 ◽  
pp. 4040-4046
Author(s):  
Dennise Templeton ◽  
Eric Matzel ◽  
Christina Morency ◽  
Joshua White

2016 ◽  
Vol 42 (3) ◽  
pp. 274-290 ◽  
Author(s):  
Magdalena Czarnogorska ◽  
Sergey V. Samsonov ◽  
Donald J. White

Author(s):  
H Chalmers ◽  
N Jakeman ◽  
P Pearson ◽  
J Gibbins

In November 2007, the UK Government set the direction for initial commercial-scale demonstration of carbon capture and storage (CCS) in the UK. It announced the rules for a competition to identify a demonstration of post-combustion capture project at a pulverized coal power plant, linked to a full chain of CCS, including carbon dioxide transport to an offshore storage site. Because there are several options for further demonstration and initial deployment projects to build on this initial effort, the UK Government will need to decide its priorities for CCS deployment. Regardless of the route, a successful transition to widespread use of CCS would have to overcome significant technical, commercial, regulatory, and political challenges. This article considers the significance of understanding and using lessons learned from previous major UK energy sector transitions to manage the development, demonstration, and deployment of CCS. The past transitions considered here are not perfect analogies, but they do suggest a range of potential futures for CCS deployment in the UK. They also provide insights into possible drivers and triggers for deployment and the general business environment required for a successful transition to widespread commercial use of CCS in the UK.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 566
Author(s):  
Anton Shchipanov ◽  
Lars Kollbotn ◽  
Mauro Encinas ◽  
Ingebret Fjelde ◽  
Roman Berenblyum

Storing CO2 in geological formations is an important component of reducing greenhouse gases emissions. The Carbon Capture and Storage (CCS) industry is now in its establishing phase, and if successful, massive storage volumes would be needed. It will hence be important to utilize each storage site to its maximum, without challenging the formation integrity. For different reasons, supply of CO2 to the injection sites may be periodical or unstable, often considered as a risk element reducing the overall efficiency and economics of CCS projects. In this paper we present outcomes of investigations focusing on a variety of positive aspects of periodic CO2 injection, including pressure management and storage capacity, also highlighting reservoir monitoring opportunities. A feasibility study of periodic injection into an infinite saline aquifer using a mechanistic reservoir model has indicated significant improvement in storage capacity compared to continuous injection. The reservoir pressure and CO2 plume behavior were further studied revealing a ‘CO2 expansion squeeze’ effect that governs the improved storage capacity observed in the feasibility study. Finally, the improved pressure measurement and storage capacity by periodic injection was confirmed by field-scale simulations based on a real geological set-up. The field-scale simulations have confirmed that ‘CO2 expansion squeeze’ governs the positive effect, which is also influenced by well location in the geological structure and aquifer size, while CO2 dissolution in water showed minor influence. Additional reservoir effects and risks not covered in this paper are then highlighted as a scope for further studies. The value of the periodic injection with intermittent CO2 supply is finally discussed in the context of deployment and integration of this technology in the establishing CCS industry.


2019 ◽  
Author(s):  
Mark Wilkinson ◽  
Debbie Polson

Abstract. Carbon capture and storage (CCS) is a potentially important technology for the mitigation of industrial CO2 emissions, however the majority of the subsurface storage capacity is in geological strata for which there is relatively little information, the so-called saline aquifers. Published estimates of the potential storage capacity of such formations, based on limited data, often give no indication of the uncertainty, despite there being substantial uncertainty associated with the data used to calculate such estimates. Using only publicly available data, a group of experts independently estimated the storage capacity of 7 regional saline aquifers. The experts produced a wide range of estimates for each aquifer due a combination of using different published values for some variables and differences in their judgements of the aquifer properties such as area and thickness. The range of storage estimates produced by the experts shows that there is significant uncertainty in such estimates, in particular the experts' range does not capture the highest possible capacity estimates, meaning that by not accounting for uncertainty, such regional estimates may underestimate the true storage capacity. The result is applicable to single values of storage capacity of regional potential, but not to detailed studies of a single storage site.


Sign in / Sign up

Export Citation Format

Share Document