Seismic fragility analysis of steel building portfolios based on mathematical models

2022 ◽  
pp. 185-204
Author(s):  
Junwon Seo ◽  
Euiseok Jeong
2020 ◽  
pp. 136943322097728
Author(s):  
Haoran Yu ◽  
Weibin Li

Reduced web section (RWS) connections and welded flange plate (WFP) connections can both effectively improve the seismic performance of a structure by moving plastic hinges to a predetermined location away from the column face. In this paper, two kinds of steel frames—with RWS connections and WFP connections—as well as different frames with welded unreinforced flange connections were studied through seismic fragility analysis. The numerical simulation was conducted by using multiscale FE modelling. Based on the incremental dynamic analysis and pushover analysis methods, probabilistic seismic demand analysis and seismic capability analysis were carried out, respectively. Finally, combined with the above analysis results, probabilistic seismic fragility analysis was conducted on the frame models. The results showed that the RWS connection and WFP connection (without double plates) have little influence on reducing the maximum inter-storey drift ratio under earthquake action. RWS connections slightly reduce the seismic capability in non-collapse stages and improve the seismic collapse resistance of a structure, which exhibits good structural ductility. WFP connections can comprehensively improve the seismic capability of a structure, but the seismic collapse resistance is worse than that of RWS connections when the structure has a large number of storeys. The frame with WFP connections has a lower failure probability at every seismic limit state, while the frame with RWS connections sacrifices some of its structural safety in non-collapse stages to reduce the collapse probability.


Author(s):  
Giuseppe Abbiati ◽  
Marco Broccardo ◽  
Imad Abdallah ◽  
Stefano Marelli ◽  
Fabrizio Paolacci

Energies ◽  
2017 ◽  
Vol 10 (7) ◽  
pp. 1037 ◽  
Author(s):  
Renjie Mo ◽  
Haigui Kang ◽  
Miao Li ◽  
Xuanlie Zhao

2016 ◽  
Vol 128 ◽  
pp. 374-399 ◽  
Author(s):  
Mohammad Amin Hariri-Ardebili ◽  
Victor E. Saouma

Author(s):  
K Leelardcharoe ◽  
J Craig ◽  
B Goodno ◽  
L Dueñas-Osorio

Abstract. Seismic fragility analysis is essential for seismic risk assessment of structures. This study focuses on the damage probability assessment of the mid-story isolation buildings with different locations of the isolation system. To this end, the performance-based fragility analysis method of the mid-story isolation system is proposed, adopting the maximum story drifts of structures above and below the isolation layer and displacement of the isolation layer as performance indicators. Then, the entire process of the mid-story isolation system, from the initial elastic state to the elastic-plastic state, then to the limit state, is simulated on the basis of the incremental dynamic analysis method. Seismic fragility curves are obtained for mid-story isolation buildings with different locations of the isolation layer, each with fragility curves for near-field and far-field ground motions, respectively. The results indicate that the seismic fragility probability subjected to the near-field ground motions is much greater than those subjected to the far-field ground motions. In addition, with the increase of the location of the isolation layer, the dominant components for the failure of mid-story isolated structures change from superstructure and isolation system to substructure and isolation system.


Sign in / Sign up

Export Citation Format

Share Document