shear wall
Recently Published Documents


TOTAL DOCUMENTS

2127
(FIVE YEARS 648)

H-INDEX

30
(FIVE YEARS 7)

2022 ◽  
Vol 189 ◽  
pp. 107067
Author(s):  
Zi-Qin Jiang ◽  
Tian Yan ◽  
Ai-Lin Zhang ◽  
Lei Su ◽  
Cun-Jie Shen

2022 ◽  
Vol 252 ◽  
pp. 113726
Author(s):  
Ian D. Williams ◽  
Carlos Arteta ◽  
Yi Shao ◽  
Claudia P. Ostertag

2022 ◽  
Vol 189 ◽  
pp. 107077
Author(s):  
Zhiwen Zhang ◽  
Wenping Xu ◽  
Wenjie Ge ◽  
Ebrahim M.A. Abbas ◽  
Hongbo Jiang ◽  
...  

Author(s):  
Bayi Bage

Abstract: In India, about 50-60% of the total area is vulnerable to the seismic activity. Earthquakes are the vibrations or the motion of the ground due to release of energy. The vibrations or ground motion are the important factors to analyze and design, the earthquake resistant structure. So, to reduce the impact of earthquake different efforts has been done in this field. Basically, earthquake exerts lateral as well as vertical forces so to dissipate those forces and the vibration in system earthquake resistant structure has been design. The design of earthquake resistant structures depends on providing stiffness, strength and inelastic deformation which withstand the earthquake forces. As the height of the structure increases the lateral loads acted on the structure increases and decrease in the stiffness, so to counteract those shear walls and different damping devices has been used. Keywords: IS Code 1892-Part-1:2016; U - Section, Z- Section, H-Section, T-Section


Author(s):  
Bayi Bage

Abstract: ETABS Stand for Extended Three-Dimensional Analysis of Building systems. ETABS integrates every aspect of the engineering design process. In the present situations of construction industry, the buildings that are being constructed are gaining significance, in general those with the best possible outcomes which are referred to members like beams and columns in multi storeys R.C structures. This paper deals with the seismic analysis of regular B+G+26 story building with shear wall and G+B+10 Story building with different irregular shapes considering different shapes of shear wall at different locations has been carried out. Which can be done in ETABS taking all the considerations regarding codes and other factors into account. All the buildings were analyzed with the same method as stated in IS 1893-Part-1:2016. The effect of shear walls on lateral capacity of the building are examined because the seismic analysis of a frame depends upon the location and symmetry of shear wall. Present study shows the shear wall improves not only the lateral stiffness and strength capacity but also the displacement capacity of structure. Comparison of results been done of different models by comparing the parameters such as story drift, story displacement, story stiffness and base reaction. Therefore, as far as possible irregularities in a building must be avoided. But, if irregularities have to be introduced for any reason, they must be designed properly following the conditions of IS 13920:1993. The complex shaped buildings are now days getting popular, but they carry a risk of sustaining damages during earthquakes. Keywords ETABS Software; IS Code 1892-Part-1:2016; IS Code 13920:1993; IS Code 875-Part-1 and Part-2


2022 ◽  
pp. 136943322110655
Author(s):  
Huifeng Hu ◽  
Jiepeng Liu ◽  
Guozhong Cheng ◽  
Yao Ding ◽  
Yohchia Frank Chen

The hybrid coupled shear wall (HCW) with replaceable coupling beam (CB) is an optimal component to recover buildings promptly after a severe earthquake. However, the reinstallation may be difficult or impossible with an identical CB because of the inelastic relative dislocation between two wall piers. This study proposes a novel HCW with different reinforcement ratios in the connection, which was tested under cyclic loading. After the test, the bolt holes can be located through terrestrial scanning, which is then utilized to fabricate a new CB that can accommodate the deformation between two wall piers. The newly replaced HCW system was also tested. As a result, all virgin test specimens fail in web fracture and show a significant inelastic chord rotation of 0.2 rad, exhibiting an excellent energy dissipation capacity. Meanwhile, the new method to locate the bolt holes after the test is feasible. The replaced HCW fails in the pull-off of anchor bars and shows poor seismic behavior due to the unpatched concrete cover in the connection. To improve the energy dissipation for the replaced HCW, high-strength grouting in the connection can be used and high-strength material can be used to replace the usual anchor bolts.


Sign in / Sign up

Export Citation Format

Share Document