Carboniferous and Permian reefs of Sverdrup Basin, Canadian Arctic: an aid to Barents Sea exploration

Author(s):  
B. Beauchamp
2019 ◽  
Vol 156 (12) ◽  
pp. 2067-2084 ◽  
Author(s):  
Michael A Pointon ◽  
Michael J Flowerdew ◽  
Peter Hülse ◽  
Simon Schneider ◽  
Martin J Whitehouse

AbstractThe Upper Cretaceous Kanguk Formation of the Sverdrup Basin, Canadian Arctic Islands, contains numerous diagenetically altered volcanic ash layers (bentonites). Eleven bentonites were sampled from an outcrop section on Ellesmere Island for U–Pb zircon secondary ion mass spectrometry dating and whole-rock geochemical analysis. Two distinct types of bentonite are identified from the geochemical data. Relatively thick (0.1 to 5 m) peralkaline rhyolitic to trachytic bentonites erupted in an intraplate tectonic setting. These occur throughout the upper Turonian to lower Campanian (c. 92–83 Ma) outcrop section and are likely associated with the alkaline phase of the High Arctic Large Igneous Province. Two thinner (<5 cm) subalkaline dacitic to rhyolitic bentonites of late Turonian to early Coniacian age (c. 90–88 Ma) are also identified. The geochemistry of these bentonites is consistent with derivation from volcanoes within an active continental margin tectonic setting. The lack of nearby potential sources of subalkaline magmatism, together with the thinner bed thickness of the subalkaline bentonites and the small size of zircon phenocrysts therein (typically 50–80 μm in length) are consistent with a more distal source area. The zircon U–Pb age and whole-rock geochemistry of these two subalkaline bentonites correlate with an interval of intense volcanism in the Okhotsk–Chukotka Volcanic Belt, Russia. It is proposed that during late Turonian to early Coniacian times intense volcanism within the Okhotsk–Chukotka Volcanic Belt resulted in widespread volcanic ash dispersal across Arctic Alaska and Canada, reaching as far east as the Sverdrup Basin, more than 3000 km away.


Geophysics ◽  
1962 ◽  
Vol 27 (2) ◽  
pp. 253-273 ◽  
Author(s):  
George D. Hobson

The Polar Continental Shelf Project, a broad program of research in the Canadian Arctic, was started in 1959. Seismic studies were undertaken by the Geological Survey of Canada. Refraction and reflection techniques were employed in the first stages of a reconnaissance program during May, June, July, and August 1960. Certain new techniques were developed during this seismic program in the high Arctic. The crew operated from motor toboggans in 1960 but helicopters will be used more extensively in the future for a more efficient operation. Adverse weather conditions such as blizzards, low temperatures, white‐outs, wind, and rain are a hindrance to operations at various times of the year. The sea ice appears to present no great noise problem to standard recording techniques. Several air shots were recorded in direct comparison with surface shots but the gain in energy level is not enough to justify using the method. The records from various locations within the Sverdrup Basin indicate that both reflection and refraction techniques are satisfactory. A cross‐section illustrates the results of the 1960 program.


Geophysics ◽  
1989 ◽  
Vol 54 (2) ◽  
pp. 171-180 ◽  
Author(s):  
F. W. Jones ◽  
J. A. Majorowicz ◽  
A. F. Embry

An average geothermal gradient of 25 ± 5 mK/m and an average heat flow of [Formula: see text] have been determined for 16 out of 20 analyzed wells along a profile across the Sverdrup Basin in the Canadian Arctic. These estimates, based on deep bottom‐hole temperature (BHT) data from exploration wells and the permafrost base boundary temperature, together with assumed heat conductivities from net rock analysis, are surprisingly low and disagree with previously published results based on shallow data. The differences may be due to the dramatic changes in boundary temperature conditions from moderate subsea conditions to ground‐surface low temperatures as a result of marine regression. Because of these effects, it appears that deep BHT temperature data are valuable in providing information about the deep heat flow. The heat flows thus determined indicate that the basin has approached thermal equilibrium.


2007 ◽  
Vol 44 (10) ◽  
pp. 1439-1452 ◽  
Author(s):  
Karsten Piepjohn ◽  
Werner von Gosen ◽  
Solveig Estrada ◽  
Franz Tessensohn

The tectonic evolution in the Piper Pass area in northern Ellesmere Island (Canadian Arctic) is characterized by the superimposition of two major deformational events: the Paleozoic Ellesmerian Orogeny and the Tertiary Eurekan deformation. It is difficult to separate the structures formed during each deformation in the parts of the Canadian Arctic in which the post-Ellesmerian and pre-Eurekan Sverdrup Basin is not preserved (Hazen Fold Belt, Central Ellesmere Fold Belt). In the vicinity of the Lake Hazen Fault Zone in the Piper Pass area, kilometre-scale kink folds, cleavage planes and SSE-directed thrust faults are unconformably overlain by Permian through Tertiary rocks of the Sverdrup Basin, which clearly indicates that they are related to the Ellesmerian Orogeny. However, the steep faults of the Lake Hazen Fault Zone are characterized by possible lateral movements and by NNW–SSE compression that cut through or affect both the pre-Ellesmerian Franklinian strata, as well as the post-Ellesmerian Sverdrup Basin deposits. These structures can clearly be assigned to post-mid Cretaceous movements of the Eurekan deformation. The Piper Pass area is a key area in which it is possible to recognize and distinguish Ellesmerian from Eurekan structures.


Sign in / Sign up

Export Citation Format

Share Document