geothermal gradient
Recently Published Documents


TOTAL DOCUMENTS

418
(FIVE YEARS 149)

H-INDEX

24
(FIVE YEARS 4)

LITOSFERA ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 867-883
Author(s):  
A. I. Rusin ◽  
A. A. Zvorygina ◽  
P. M. Valizer

Research subject. This article presents mineralogical, petrological and geochemical studies of lawsonite eclogites and metasomatites of the Utarbayev Аssociation of the Maksyutov complex. The Utarbayev Association forms an independent unit in the Maksyutovsky complex accretion structure. This Association features a variety of lawsonite-bearing metasomatites that form zonal halos in the frame of block-like diopside-grossular bodies included in the antigorite-serpentinite melange. The Utarbayev Association differs from typical lawsonite-blue shale complexes of collisional oro genes by the absence of mineral parageneses of lawsonite-bearing rocks of blue amphibolites.Methods. A microprobe analysis of the mineral composition was performed using a Cameca SX-100 microanalyzer. The content of petrogenic, rare and rare-earth elements was determined by X-ray spectroscopy (CPM-18) and mass spectroscopy (ICP-MS, ELAN-90). Results. An indicator mine ral paragenesis (Grt + Omp + Lws + Di) ± (Coe-Qz + Ttn) that characterizes lawsonite eclogite was found. Omphacite (Jd38–44) and unchanged lawsonite (Н2O-OH – 11.8%, Ca/Al = 0.48–0.51 и Fe/Al = 0.01 0.02%) are represented as inclusions in grossular-almandine garnet (Alm39–46Grs41–51), coesite – as microinclusions in omphacite. Thermobarometry (Grt-Omp, Grt-Omp-Ph) showed the following formation conditions of lawsonite paragenesis: T = 495–622°C under P = 2.2–2.4 GPa. The age of crystallization of lawsonite eclogite was found to be Lower Paleozoic (471–444 Ma).Conclusions. The lawsonite eclogite of the Utarbayev Association is similar to the complexes of «cold» eclogites, which are formed under the conditions of a very low geothermal gradient and are rarely preserved when removed into the upper crust. The latest review published in the «Journal of Metamorphic Geology» (2014) mentions 19 sites, where lawsonite eclogites were discovered on the earth’s surface. Тhe HP-UHP lawsonitebearing Utarbayev Rock Association complements this list.


2021 ◽  
Author(s):  
Elshalom Omokpariola ◽  
Emmanuel Anakwuba

Abstract In tackling energy-related challenges in Nigeria; the exploration of an alternative source of energy (Geothermal Energy) comes to the limelight as it is generated below the earth subsurface. This work focuses on the delineation of geothermal energy potentials in parts of Calabar Flank, in southeastern Nigeria using Aeromagnetic Data. The aim is to understand the geothermal energy potentials and structural of parts of the Calabar flank by studying the various geothermal, geological, and structural parameters using Aeromagnetic Data. The methodologies applied are quantitative for structural analysis and qualitative using spectral analysis and 3D Euler Deconvolution. The study area lies between within Latitude 5°30ʹ00ʺ N - 6°30ʹ00ʺN and Longitude 7°30ʹ00ʺE - 8°30ʹ0ʺE respectively. Results from the 3D Euler analysis revealed the depth range of 0.25 Km to 4.018 Km. the spectral Analysis revealed a depth range of Magnetic source (Zt) is (-)0.564 Km to (-)0.828 Km, the Zo is (-)4.261 Km to (-)5.999Km and the average depth to basement thickness is (-)4.825 Km. The Curie Point Depth, Geothermal Gradient, and Heat flow yield an average depth of (-)9.452 Km, a value of 61.893CKm-1, and 154.983 mWm-2 from the Spectral Analysis. Some structural features such as trending faults, and fractured basements was observed at the NE-SW of the study area and this correlated to the relatively high heat flow and geothermal gradient at the NNE-SSW part is associated with thermal structures, mineralogical and tectonic history from the NE-SW trending fault in the study area is suitable for geothermal energy exploitation.


2021 ◽  
Author(s):  
Mohamed Elyas ◽  
Sherif Aly ◽  
Uche Achinanya ◽  
Sergey Prosvirkin ◽  
Shayma AlSaffar ◽  
...  

Abstract Well integrity is one of the main challenges that are facing operators, finding the source of the well problem and isolating it before a catastrophic event occurs. This study demonstrates the power of integrating different reservoir monitoring and well integrity logs to evaluate well integrity, identify the underlying cause of the potential failure, and providing a potential corrective solution. Recently, some Injector/producer wells reported migration of injection fluids/gas into shallower sections, charging these formations and increasing the risk of compromised well integrity. Characterization of the well issues required integration of multi-detector pulsed-neutron, well integrity (multi finger caliper, multi-barrier corrosion, cement evaluation, and casing thickness measurements), high precision temperature logs and spectral noise logs. After data integration, detailed analysis was performed to specifically find the unique issues in each well and assess possible corrective actions. The integrated well integrity logs clearly showed different 9.625-inch and 13.375-inch casings leak points. The reservoir monitoring logs showed lateral and vertical gas and water movements across Wara, Tayarat, Rus, and Radhuma formations. Cement evaluation loges showed no primary cement behind the first barrier casing which was the root cause of the problem. Therefore, the proposed solution, was a cement squeeze. Post squeeze, re-logging occurred, validating zonal isolation and a return of a standard geothermal gradient across the Tayarat formation. Most importantly, the cement evaluation identified good bond from the squeeze point clear to surface, isolating all formations. All these wells were returned to service (injector/producer), daily annular pressure monitoring confirmed that no further pressure build up was seen. Kuwait Oil Company managed to avoid a catastrophic well integrity event on these wells and utilized the approach presented to take the proper corrective actions, and validate that the action taken resolved the initial well integrity issues. Consequently, the wells were returned to service, and the company avoided a costly high probability blowout.


2021 ◽  
Vol 931 (1) ◽  
pp. 012012
Author(s):  
E V Kusochkova ◽  
I M Indrupskiy ◽  
V N Kuryakov

Abstract It is known that initial composition of the hydrocarbon fluid in a petroleum reservoir changes significantly with depth due to the influence of gravity and geothermal gradient. Classical models of these phenomena are based on the assumption of equilibrium (quasiequilibrium) distribution of component concentrations in the gravity field with the presence of stationary thermodiffusional flux. However, there are typical situations in gas condensate reservoirs when the quasi-equilibrium conditions are not met. For example, this is true if immobile residual oil exists in the reservoir or for deep tight formations where gravity segregation is not completed. For such cases, modified models are required. They are proposed in this paper to take into account the non-equilibrium conditions of the initial fluid composition distribution in gas condensate (or oil-gas-condensate) reservoirs.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Iván de la Cruz Vargas-Cordero ◽  
Lucia Villar-Muñoz ◽  
Umberta Tinivella ◽  
Michela Giustiniani ◽  
Nathan Bangs ◽  
...  

AbstractThe Central-South Chile margin is an excellent site to address the changes in the gas hydrate system since the last deglaciation associated with tectonic uplift and great earthquakes. However, the dynamic of the gas hydrate/free gas system along south central Chile is currently not well understood. From geophysical data and modeling analyses, we evaluate gas hydrate/free gas concentrations along a seismic line, derive geothermal gradients, and model past positions of the Bottom Simulating Reflector (BSR; until 13,000 years BP). The results reveal high hydrate/free gas concentrations and local geothermal gradient anomalies related to fluid migration through faults linked to seafloor mud volcanoes. The BSR-derived geothermal gradient, the base of free gas layers, BSR distribution and models of the paleo-BSR form a basis to evaluate the origin of the gas. If paleo-BSR coincides with the base of the free gas, the gas presence can be related to the gas hydrate dissociation due to climate change and geological evolution. Only if the base of free gas reflector is deeper than the paleo-BSR, a deeper gas supply can be invoked.


Author(s):  
Jing LI ◽  
Zheng YAO ◽  
Hongbo ZHAO ◽  
Zewei WANG

ABSTRACT The gas hydrate stability zone (GHSZ) is the essential condition for gas hydrate accumulation, which is controlled by three main factors: gas component, geothermal gradient and permafrost thickness. Based on the gas component of hydrate samples from drilling in Muri coalfield, the gas hydrate phase equilibrium curve was calculated using Sloan's natural gas hydrate phase equilibrium procedure (CSMHYD) program. Through temperature data processing of coalfield boreholes, some important data such as thickness of permafrost and geothermal gradient were obtained. The GHSZ parameters of a single borehole were calculated by programming based on the above basic data. The average thickness of GHSZ of 85 boreholes in Muri coalfield amounted to approximately 1000 m, indicating very broad space for gas hydrate occurrence. The isogram of GHSZ bottom depth drawn from single borehole data in Muri coalfield demonstrated the regional distribution characteristics of GHSZ, and identified three favourable areas of gas hydrate occurrence where the bottom of GHSZ had a burial depth >1500 m – namely, the southern part of Juhugeng Mining Area, the middle part of Duosuogongma Mining Area and the eastern part of Xuehuoli Mining Area.


Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1340
Author(s):  
Wenbo Zhang ◽  
Guangwei Wang ◽  
Zicheng Cao

Dolomite plays an important role in carbonate reservoirs. The topography in the study area creates conditions for reflux dolomitization. The northeastward paleogeomorphy during the deposition of the Yingshan Formation was favorable for reflux dolomitization. Furthermore, the petrological and geochemical evidence indicated that the formation of finely crystalline dolomites was penecontemporaneous to sedimentation. The content of powder crystal dolomites increases from grainstone, to packstone, to mudstone. Previous studies only analyzed the origin of dolomites based on traditional geological methods, but did not analyze the spatial influence of reflux dolomitization on the reservoir quality. In this study, the reflux dolomitization of platform carbonate sediments was evaluated using three-dimensional reactive transport models. The sensitivity of dolomitization to a range of intrinsic and extrinsic controls was also explored. The reflux dolomitization involves replacement dolomitization and over-dolomitization. The porosity change is the result of the abundance change of dolomite and anhydrite. The fluid flow pattern in the model is related to the injection rate and geothermal gradient. According to the spatial and temporal change of mineral, ionic concentration, and physical property, the reflux dolomitization could be divided into five stages. From the sensitivity analysis, high permeability promotes dolomitization only in the initial stage, while low permeability and high porosity means stronger dolomitization. Besides, the injection rate, reactive surface area (RSA), geothermal gradient, and brine salinity are all proportional to the dolomitization. Differently from porosity change, the permeability change is concentrated in the upper part of the numerical model. The location of “sweet spot” varies with the locations of change centers of porosity and permeability. In the stage-1 and 4 of dolomitzation, it overlaps with porosity and permeability growth centers. While in the stage-2, 3 and 5, it lies between the porosity and permeability growth/reduction centers.


2021 ◽  
Author(s):  
◽  
Lai Kwan Denise Tang

<p>Hong Kong represents a microcosm of the magmatic and tectonic processes that are related to formation of the Southeast China Magmatic Belt (SCMB, ~1,300 km long by 400 km wide). The SCMB is dominated by extensive Mesozoic (Yanshanian Orogeny) igneous rocks, which form part of an extensive, long-lived circum-Pacific igneous province. In Hong Kong, large silicic ignimbrites, produced from several calderas identified through geological mapping, together with their sub-volcanic plutons record a ~26-Myr period of magmatic activities from ~164 to 138 Ma. This work studies these volcanic-plutonic assemblages with the associated Lantau and High Island caldera complexes, with an emphasis on the ~143-138 Ma period from the latter complex. This study uses multiple techniques, including field studies, zircon geochronology and trace element analyses, and zircon and apatite low-temperature thermochronology, to gain new insights into the Mesozoic tectono-magmatic history in this region.  Field studies demonstrate that the High Island caldera complex (with its main collapse at 140.9±0.4 Ma in association with the High Island Tuff) is structurally more complex than previously suggested and represents a long-lived, large (320 km²) feature. The volcanic strata exposed in the eastern part of the caldera are inferred to have been tilted during syneruptive, asymmetric collapse of the caldera floor, whereas those in other parts have been affected by block faulting but not overall tilting. Two ignimbrites (e.g. Long Harbour: 141.4±1.0 Ma) exposed within the caldera outline are now interpreted to have accumulated in local volcano-tectonic basins, confined by faults that were later exploited by dyke intrusions. Field observations offer important constraints on the ages of volcanic and plutonic units, which have been tested by zircon U-Pb dating in this study. The field evidence also negates a previous interpretation that there was an overall tilting of the High Island caldera complex.  U-Pb dating and trace element analyses using secondary-ion mass spectrometry (SIMS) techniques have been carried out on zircons separated from 21 samples, chosen from both volcanic and plutonic samples within the Lantau and High Island Caldera complexes. The SIMS age datasets reveal two groups: (1) seven samples with unimodal age spectra; and (2) fourteen samples yielding multiple age components. Five samples in group 1 yield mean ages indistinguishable from their previously published ID-TIMS ages, demonstrating that the SIMS techniques have generated results fully in agreement with the ID-TIMS methods, although with overall less precision. Of the two other samples, one is slightly younger than the published ID-TIMS age, and the other has no previous age determination. Thirteen samples in group 2 are interpreted to have crystallisation/eruption ages that are younger (although often within 2.s.d. uncertainties) than their corresponding ID-TIMS values. The remaining sample from this group has no previous age determination. The overall age patterns from both groups suggest that, instead of separate phases of activity at ~143 and 141-140 Ma as previously inferred, magmatic and volcanic activities were continuous (within age analytical uncertainties) over a ~5 Myr period. Direct linkages between several plutonic and volcanic units in this period of activity (e.g. High Island Tuff and the Kowloon Granite) are no longer supported by the age data, and magmatic activity represented by exposed plutons continued until 137.8±0.8 Ma, as with the Mount Butler Granite.  Under CL imagery, a wide variety of zircon textures is evident, indicative of complex processes that operated in the magmatic systems. Zircon trace element data coupled with textural characteristics enable identification of some common petrogenetic processes. Overall, the intra-grain (cores-rims, sector-zoned zircons) and intra-sample variations in trace element abundance and elemental ratios are more significant than the differences between individual samples. Zircon chemistries in samples from both the volcanic and plutonic records indicate that there are two groups of volcanic-plutonic products through the history of the High Island Caldera magmatic system. Two evolutionary models are proposed here to explain these two groups. In the first model, the magmatic system comprises a single domain that fluctuated in temperature through varying inputs of hotter melts (and was randomly tapped). In the second model the intrusive and extrusive products represent interplay of two magmatic domains in the crust, with contrasting characteristics.  Zircon and apatite fission track analyses have been carried out on several of the rocks dated by U-Pb methods (either SIMS or TIMS), together with a selection of other Mesozoic igneous rocks and post-magmatic Cretaceous and Eocene sediments to cover the geographic area of Hong Kong. The fission-track dataset and associated thermal modelling show that the igneous rocks and Cretaceous sediments (but not the Eocene sediments) together experienced post-emplacement or post-depositional heating to >250 ºC, subsequently cooling through 120-60 ºC after ~80 Ma. The heating reflects the combined effects of an enhanced geothermal gradient and burial. The enhanced geothermal gradient is interpreted to represent continuing Yanshanian magmatic activity at depth, without any documented surface eruption products, until ~100-80 Ma. The data also indicate a long-term, slow cooling (~1 ºC/Myr) since the early Cenozoic, linked to ~2-3 km of erosion-driven exhumation. The thermo-tectonic history of Hong Kong reflects the mid-Cretaceous transition of southeast China from an active to a passive margin bordered by marginal basins that formed in the early Cenozoic. The inferred cessation of magmatism at depth below Hong Kong at ~100-80 Ma is broadly coincident with the cessation of plutonic activity in many other circum-Pacific magmatic provinces related to reorganisation of Pacific Plate motion.</p>


2021 ◽  
Author(s):  
◽  
Lai Kwan Denise Tang

<p>Hong Kong represents a microcosm of the magmatic and tectonic processes that are related to formation of the Southeast China Magmatic Belt (SCMB, ~1,300 km long by 400 km wide). The SCMB is dominated by extensive Mesozoic (Yanshanian Orogeny) igneous rocks, which form part of an extensive, long-lived circum-Pacific igneous province. In Hong Kong, large silicic ignimbrites, produced from several calderas identified through geological mapping, together with their sub-volcanic plutons record a ~26-Myr period of magmatic activities from ~164 to 138 Ma. This work studies these volcanic-plutonic assemblages with the associated Lantau and High Island caldera complexes, with an emphasis on the ~143-138 Ma period from the latter complex. This study uses multiple techniques, including field studies, zircon geochronology and trace element analyses, and zircon and apatite low-temperature thermochronology, to gain new insights into the Mesozoic tectono-magmatic history in this region.  Field studies demonstrate that the High Island caldera complex (with its main collapse at 140.9±0.4 Ma in association with the High Island Tuff) is structurally more complex than previously suggested and represents a long-lived, large (320 km²) feature. The volcanic strata exposed in the eastern part of the caldera are inferred to have been tilted during syneruptive, asymmetric collapse of the caldera floor, whereas those in other parts have been affected by block faulting but not overall tilting. Two ignimbrites (e.g. Long Harbour: 141.4±1.0 Ma) exposed within the caldera outline are now interpreted to have accumulated in local volcano-tectonic basins, confined by faults that were later exploited by dyke intrusions. Field observations offer important constraints on the ages of volcanic and plutonic units, which have been tested by zircon U-Pb dating in this study. The field evidence also negates a previous interpretation that there was an overall tilting of the High Island caldera complex.  U-Pb dating and trace element analyses using secondary-ion mass spectrometry (SIMS) techniques have been carried out on zircons separated from 21 samples, chosen from both volcanic and plutonic samples within the Lantau and High Island Caldera complexes. The SIMS age datasets reveal two groups: (1) seven samples with unimodal age spectra; and (2) fourteen samples yielding multiple age components. Five samples in group 1 yield mean ages indistinguishable from their previously published ID-TIMS ages, demonstrating that the SIMS techniques have generated results fully in agreement with the ID-TIMS methods, although with overall less precision. Of the two other samples, one is slightly younger than the published ID-TIMS age, and the other has no previous age determination. Thirteen samples in group 2 are interpreted to have crystallisation/eruption ages that are younger (although often within 2.s.d. uncertainties) than their corresponding ID-TIMS values. The remaining sample from this group has no previous age determination. The overall age patterns from both groups suggest that, instead of separate phases of activity at ~143 and 141-140 Ma as previously inferred, magmatic and volcanic activities were continuous (within age analytical uncertainties) over a ~5 Myr period. Direct linkages between several plutonic and volcanic units in this period of activity (e.g. High Island Tuff and the Kowloon Granite) are no longer supported by the age data, and magmatic activity represented by exposed plutons continued until 137.8±0.8 Ma, as with the Mount Butler Granite.  Under CL imagery, a wide variety of zircon textures is evident, indicative of complex processes that operated in the magmatic systems. Zircon trace element data coupled with textural characteristics enable identification of some common petrogenetic processes. Overall, the intra-grain (cores-rims, sector-zoned zircons) and intra-sample variations in trace element abundance and elemental ratios are more significant than the differences between individual samples. Zircon chemistries in samples from both the volcanic and plutonic records indicate that there are two groups of volcanic-plutonic products through the history of the High Island Caldera magmatic system. Two evolutionary models are proposed here to explain these two groups. In the first model, the magmatic system comprises a single domain that fluctuated in temperature through varying inputs of hotter melts (and was randomly tapped). In the second model the intrusive and extrusive products represent interplay of two magmatic domains in the crust, with contrasting characteristics.  Zircon and apatite fission track analyses have been carried out on several of the rocks dated by U-Pb methods (either SIMS or TIMS), together with a selection of other Mesozoic igneous rocks and post-magmatic Cretaceous and Eocene sediments to cover the geographic area of Hong Kong. The fission-track dataset and associated thermal modelling show that the igneous rocks and Cretaceous sediments (but not the Eocene sediments) together experienced post-emplacement or post-depositional heating to >250 ºC, subsequently cooling through 120-60 ºC after ~80 Ma. The heating reflects the combined effects of an enhanced geothermal gradient and burial. The enhanced geothermal gradient is interpreted to represent continuing Yanshanian magmatic activity at depth, without any documented surface eruption products, until ~100-80 Ma. The data also indicate a long-term, slow cooling (~1 ºC/Myr) since the early Cenozoic, linked to ~2-3 km of erosion-driven exhumation. The thermo-tectonic history of Hong Kong reflects the mid-Cretaceous transition of southeast China from an active to a passive margin bordered by marginal basins that formed in the early Cenozoic. The inferred cessation of magmatism at depth below Hong Kong at ~100-80 Ma is broadly coincident with the cessation of plutonic activity in many other circum-Pacific magmatic provinces related to reorganisation of Pacific Plate motion.</p>


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Zhongxi Zhu ◽  
Chaofei Wang ◽  
Zhigang Guan ◽  
Wanneng Lei

Precise calculation of gas temperature profile is the key to gas drilling design. It is traditionally assumed that the gas temperature distribution in the wellbore is equal to the formation temperature, without considering the influence of fluid flow and Joule-Thomson cooling effect. This paper puts forward a gradient equation method for gas temperature distribution in wellbore considering gas flow and Joule-Thomson local cooling of the bit. The method applies pressure, temperature, density, and velocity equations to gas flow in drillstrings and annulus. The solution of the gradient equation is in the form of the fourth-order Runge-Kutta equation. Bottom wellbore temperatures measured at depths of 700 to 2000 m in an actual well are consistent with those predicted by the gradient method. Due to the Joule-Thomson cooling effect at the bit nozzle, the temperature drops by about 30°C. The sensitivity analysis is carried out by gradient method, and the results show that the temperature drop range of different nozzle sizes can reach 60°C due to the Joule-Thomson cooling effect. Stable temperature curves can be established within a few minutes of the gas cycle. Due to the influence of gas flow and Joule-Thomson cooling, the gas temperature in the wellbore deviates significantly from the geothermal temperature in the formation under the flow condition. The temperature of the gas in drillstrings increases as the drill depth increases and then decreases rapidly near the bottom of the hole. As the gas flows upward along the annulus, the gas temperature rises first, surpasses the formation temperature, and then decreases gradually along the geothermal gradient trend.


Sign in / Sign up

Export Citation Format

Share Document