Design of a general propose neuro-fuzzy controller by using modified adaptive-network-based fuzzy inference system

2010 ◽  
Vol 64 (5) ◽  
pp. 433-442 ◽  
Author(s):  
Alireza Peymanfar ◽  
Abdollah Khoei ◽  
Kheyrollah Hadidi
Author(s):  
Mohammed A. A. Al-Mekhlafi ◽  
Herman Wahid ◽  
Azian Abd Aziz

The inverted pendulum is an under-actuated and nonlinear system, which is also unstable. It is a single-input double-output system, where only one output is directly actuated. This paper investigates a single intelligent control system using an adaptive neuro-fuzzy inference system (ANFIS) to stabilize the inverted pendulum system while tracking the desired position. The non-linear inverted pendulum system was modelled and built using MATLAB Simulink. An adaptive neuro-fuzzy logic controller was implemented and its performance was compared with a Sugeno-fuzzy inference system in both simulation and real experiment. The ANFIS controller could reach its desired new destination in 1.5 s and could stabilize the entire system in 2.2 s in the simulation, while in the experiment it took 1.7 s to reach stability. Results from the simulation and experiment showed that ANFIS had better performance compared to the Sugeno-fuzzy controller as it provided faster and smoother response and much less steady-state error.


2021 ◽  
Vol 19 ◽  
pp. 53-61
Author(s):  
Aristide Timene ◽  
Ndjiya Ngasop ◽  
Haman Djalo

This study presents a design of an adaptive neuro-fuzzy controller for tractors’ tillage operations. Since the classical controllers allows plowing depth errors due to the variations of lands structure, the use of the combined neural networks and fuzzy logic methods decreases these errors. The proposed controller is based on Adaptive Neuro-Fuzzy Inference System (ANFIS), which permits the generation of fuzzy rules to cancel the nonlinearity and disturbances on the implement. The design and simulations of the system, which consist of a hitch-implement mechanism, an electro-hydraulic actuator, and a neuro-fuzzy controller, are conducted in SolidWorks and MATLAB software. The performance of the proposed controller is analyzed and is contrasted with a Proportional Integral Derivative (PID) controller. The obtained results show that the neuro-fuzzy controller adapts perfectly to the dynamics of the system with rejection of disturbances.


2017 ◽  
Vol 3 (1) ◽  
pp. 36-48
Author(s):  
Erwan Ahmad Ardiansyah ◽  
Rina Mardiati ◽  
Afaf Fadhil

Prakiraan atau peramalan beban listrik dibutuhkan dalam menentukan jumlah listrik yang dihasilkan. Ini menentukan  agar tidak terjadi beban berlebih yang menyebabkan pemborosan atau kekurangan beban listrik yang mengakibatkan krisis listrik di konsumen. Oleh karena itu di butuhkan prakiraan atau peramalan yang tepat untuk menghasilkan energi listrik. Teknologi softcomputing dapat digunakan  sebagai metode alternatif untuk prediksi beban litrik jangka pendek salah satunya dengan metode  Adaptive Neuro Fuzzy Inference System pada penelitian tugas akhir ini. Data yang di dapat untuk mendukung penelitian ini adalah data dari APD PLN JAWA BARAT yang berisikan laporan data beban puncak bulanan penyulang area gardu induk majalaya dari januari 2011 sampai desember 2014 sebagai data acuan dan data aktual januari-desember 2015. Data kemudian dilatih menggunakan metode ANFIS pada software MATLAB versi b2010. Dari data hasil pelatihan data ANFIS kemudian dilakukan perbandingan dengan data aktual dan data metode regresi meliputi perbandingan anfis-aktual, regresi-aktual dan perbandingan anfis-regresi-aktual. Dari perbandingan disimpulkan bahwa data metode anfis lebih mendekati data aktual dengan rata-rata 1,4%, menunjukan prediksi ANFIS dapat menjadi referensi untuk peramalan beban listrik dimasa depan.


Author(s):  
Angga debby frayudha ◽  
Aris Yulianto ◽  
Fatmawatul Qomariyah

Di era revolusi industry 4.0 terdapat banyak sekali kemudahan yang diberikan teknologi kepada manusia. Tentu ini akan menjadi baik apabila manusia mampu memanfaatkan hal tersebut dengan baik pula. Namun disisi lain juga bisa mengakibatkan dampak negative terhadap manusia, misalnya dengan adanya internet bisa mengakibatkan manusia melakukan penipuan di media social. Selain itu dengan canggihnya teknologi dapat menjadikan manusia menjadi malas yang bisa berimbas menurunnya kualitas sumber daya manusia. Maka dari itu untuk menghadapi hal ini perlu menyiapkan pendidikan yang baik.Pendidikan akan berjalan baik apabila lembaga yang mengurusnya berkompeten dalam melakukan tugasnya .Penulis coba memberikan ide untuk memprediksi kinerja pegawai Dinas Pendidikan Kabupaten Rembang menggunakan mentode ANFIS (Adaptive Neuro Fuzzy Inference System) guna untuk membantu lembaga tersebut menyeleksi maupun menilai kinerja karyawan demi meningkatkan kualitas dari segi sumber daya manusia. ANFIS merupakan jaringan adaptif yang berbasis pada sistem kesimpulan fuzzy (fuzzy inference system). Model penilaian kinerja pegawai di Dinas Pendidikan Kabupaten Rembang dengan menggunakan Adaptive Neuro-Fuzzy Inference System (ANFIS) menghasilkan penilaian  yang lebih baik dan akurat.  Hasil pengujian metode tersebut memiliki nilai akurasi 65%. Dengan metode ANFIS (Adaptive Neuro Fuzzy Inference System) dapat memprediksi kinerja karyawan sebagai salah satu pengambilan keputusan terhadap kinerja pegawai. Selain itu nantinya system penlaian kinerja pegawai akan lebih tertata dan efisien.


Sign in / Sign up

Export Citation Format

Share Document