scholarly journals Tractor-Implement Tillage Depth Control Using Adaptive Neuro-Fuzzy Inference System (ANFIS)

2021 ◽  
Vol 19 ◽  
pp. 53-61
Author(s):  
Aristide Timene ◽  
Ndjiya Ngasop ◽  
Haman Djalo

This study presents a design of an adaptive neuro-fuzzy controller for tractors’ tillage operations. Since the classical controllers allows plowing depth errors due to the variations of lands structure, the use of the combined neural networks and fuzzy logic methods decreases these errors. The proposed controller is based on Adaptive Neuro-Fuzzy Inference System (ANFIS), which permits the generation of fuzzy rules to cancel the nonlinearity and disturbances on the implement. The design and simulations of the system, which consist of a hitch-implement mechanism, an electro-hydraulic actuator, and a neuro-fuzzy controller, are conducted in SolidWorks and MATLAB software. The performance of the proposed controller is analyzed and is contrasted with a Proportional Integral Derivative (PID) controller. The obtained results show that the neuro-fuzzy controller adapts perfectly to the dynamics of the system with rejection of disturbances.

Author(s):  
O F Lutfy ◽  
Mohd S B Noor ◽  
M H Marhaban ◽  
K A Abbas

This paper presents a genetically trained PID (proportional-integral-derivative)-like ANFIS (adaptive neuro-fuzzy inference system) acting as a feedback controller to control non-linear systems. Three important issues are addressed in this paper, which are, first, the evaluation of the ANFIS as a PID-like controller; second, the utilization of the GA (genetic algorithm) alone to train the ANFIS controller, instead of the hybrid learning methods that are widely used in the literature; and, third, the determination of the input and output scaling factors for this controller by the GA. The GA, with real-coding operators, is used to adjust all of the ANFIS parameters, which include the input and output scaling factors, the centres and widths of the input membership functions (MFs), and the consequent parameters. To show the effectiveness of this controller and its learning method, several non-linear plants, including the CSTR (continuous stirred tank reactor), have been selected to be controlled by this controller through simulation. Moreover, this controller's robustness to output disturbances has also been tested and the results clearly indicated the remarkable performance of this controller and its learning algorithm. In addition, the result of comparing the performance of this controller with a genetically tuned classical PID controller has shown the superiority of the PID-like ANFIS controller.


Author(s):  
Mohammed A. A. Al-Mekhlafi ◽  
Herman Wahid ◽  
Azian Abd Aziz

The inverted pendulum is an under-actuated and nonlinear system, which is also unstable. It is a single-input double-output system, where only one output is directly actuated. This paper investigates a single intelligent control system using an adaptive neuro-fuzzy inference system (ANFIS) to stabilize the inverted pendulum system while tracking the desired position. The non-linear inverted pendulum system was modelled and built using MATLAB Simulink. An adaptive neuro-fuzzy logic controller was implemented and its performance was compared with a Sugeno-fuzzy inference system in both simulation and real experiment. The ANFIS controller could reach its desired new destination in 1.5 s and could stabilize the entire system in 2.2 s in the simulation, while in the experiment it took 1.7 s to reach stability. Results from the simulation and experiment showed that ANFIS had better performance compared to the Sugeno-fuzzy controller as it provided faster and smoother response and much less steady-state error.


Sign in / Sign up

Export Citation Format

Share Document