scholarly journals 956P Combined accuracy of computed tomography and magnetic resonance imaging in detecting level wise metastatic neck nodes and extracapsular spread

2020 ◽  
Vol 31 ◽  
pp. S677
Author(s):  
M.D. Mair ◽  
A. Baker ◽  
R. Vaidhyanath
2014 ◽  
Vol 38 (2) ◽  
pp. 212-214 ◽  
Author(s):  
Mehmet Beyazal ◽  
Necip Pirinççi ◽  
Alpaslan Yavuz ◽  
Sercan Özkaçmaz ◽  
Gülay Bulut

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sang Wha Kim ◽  
Adams Hei Long Yuen ◽  
Cherry Tsz Ching Poon ◽  
Joon Oh Hwang ◽  
Chang Jun Lee ◽  
...  

AbstractDue to their important phylogenetic position among extant vertebrates, sharks are an invaluable group in evolutionary developmental biology studies. A thorough understanding of shark anatomy is essential to facilitate these studies and documentation of this iconic taxon. With the increasing availability of cross-sectional imaging techniques, the complicated anatomy of both cartilaginous and soft tissues can be analyzed non-invasively, quickly, and accurately. The aim of this study is to provide a detailed anatomical description of the normal banded houndshark (Triakis scyllium) using computed tomography (CT) and magnetic resonance imaging (MRI) along with cryosection images. Three banded houndsharks were scanned using a 64-detector row spiral CT scanner and a 3 T MRI scanner. All images were digitally stored and assessed using open-source Digital Imaging and Communications in Medicine viewer software in the transverse, sagittal, and dorsal dimensions. The banded houndshark cadavers were then cryosectioned at approximately 1-cm intervals. Corresponding transverse cryosection images were chosen to identify the best anatomical correlations for transverse CT and MRI images. The resulting images provided excellent detail of the major anatomical structures of the banded houndshark. The illustrations in the present study could be considered as a useful reference for interpretation of normal and pathological imaging studies of sharks.


2021 ◽  
pp. 197140092098866
Author(s):  
Daniel Thomas Ginat ◽  
James Kenniff

Background The COVID-19 pandemic led to a widespread socioeconomic shutdown, including medical facilities in many parts of the world. The purpose of this study was to assess the impact on neuroimaging utilisation at an academic medical centre in the United States caused by this shutdown. Methods Exam volumes from 1 February 2020 to 11 August 2020 were calculated based on patient location, including outpatient, inpatient and emergency, as well as modality type, including computed tomography and magnetic resonance imaging. 13 March 2020 was designated as the beginning of the shutdown period for the radiology department and 1 May 2020 was designated as the reopening date. The scan volumes during the pre-shutdown, shutdown and post-shutdown periods were compared using t-tests. Results Overall, neuroimaging scan volumes declined significantly by 41% during the shutdown period and returned to 98% of the pre-shutdown period levels after the shutdown, with an estimated 3231 missed scans. Outpatient scan volumes were more greatly affected than inpatient scan volumes, while emergency scan volumes declined the least during the shutdown. In addition, the magnetic resonance imaging scan volumes declined to a greater degree than the computed tomography scan volumes during the shutdown. Conclusion The shutdown from the COVID-19 pandemic had a substantial but transient impact on neuroimaging utilisation overall, with variable magnitude depending on patient location and modality type.


2021 ◽  
pp. 1-7
Author(s):  
Damrong Wiwatwongwana ◽  
Pichaya Kulniwatcharoen ◽  
Pongsak Mahanupab ◽  
Pannee Visrutaratna ◽  
Atchareeya Wiwatwongwana

Sign in / Sign up

Export Citation Format

Share Document