Reduction of CO2 under high pressure and high temperature on Pb-granule electrodes in a fixed-bed reactor in aqueous medium

2004 ◽  
Vol 274 (1-2) ◽  
pp. 237-242 ◽  
Author(s):  
Fatih Köleli ◽  
Didem Balun
2019 ◽  
Vol 42 (3) ◽  
pp. 655-660 ◽  
Author(s):  
Marisa De Sousa Duarte ◽  
Matthieu Rolland ◽  
Corinne Sagnard ◽  
Didier Suire ◽  
Frederic Flacher ◽  
...  

Author(s):  
Cynthia K. McCurry ◽  
Robert R. Romanosky

This paper describes the experiences leading to successful sampling of hot, contaminated, coal-derived gas streams for alkali constituents using advanced spectrometers. This activity was integrated with a multi-phase, combustion test program which addressed the use of minimally treated, coal-derived fuel gas in gas turbines. Alkali contaminants in coal-derived fuels are a source of concern, as they may induce corrosion of and deposition on turbine components. Real-time measurement of alkali concentrations in gasifier output fuel gas streams is important in evaluating these effects on turbine performance. An automated, dual-channel, flame atomic emission spectrometer was used to obtain on-line measurements of total sodium and potassium mass loadings (vapors and particles) in two process streams at the General Electric fixed-bed coal gasifier and turbine combustor simulator facility in Schenectady, New York. Alkali measurements were taken on (1) slipstreams of high temperature, high pressure, minimally clean, low-Btu fuel gas containing entrained particles from the gasifier and (2) a slipstream of the exhaust gas from the combustor/turbine simulator. Alkali detection limits for the analyzer were found to be on the order of one part per billion. Providing a representative sample to the alkali analyzer at the limited flows required by the instrument was a major challenge of this activity. Several approaches and sampling hardware configurations were utilized with varying degrees of success during this testing campaign. The resulting information formed the basis for a second generation sampling system which has recently been successfully utilized to measure alkali concentrations in slipstreams from the described fixed-bed coal gasifier and turbine combustor simulator.


2018 ◽  
Vol 178 ◽  
pp. 1-6 ◽  
Author(s):  
Caroline O.T. Lemos ◽  
Leticia L. Rade ◽  
Marcos A. de S. Barrozo ◽  
Lucio Cardozo-Filho ◽  
Carla E. Hori

Polyhedron ◽  
2018 ◽  
Vol 155 ◽  
pp. 390-397 ◽  
Author(s):  
P. Tamizhdurai ◽  
Subramanian Sakthinathan ◽  
P. Santhana Krishnan ◽  
A. Ramesh ◽  
A. Abilarasu ◽  
...  

2012 ◽  
Vol 229-231 ◽  
pp. 126-129 ◽  
Author(s):  
Yan Gao ◽  
Tao Luan ◽  
Tao Lv ◽  
Hong Ming Xu

The V(1)-W(4.5)-Mo(x)/TiO2 catalysts was prepared by the incipient dry impregnation method. The catalyst samples were ground and sieved for 0.3~0.6 mm. The NO catalytic efficiency, selectivity against N2O of the catalysts were investigated on a fixed bed reactor under simulated exhaust gas with a typical gas composition. The addition of Mo enhanced the catalytic efficiency of V(1)-W(4.5)-Mo(x)/TiO2 catalysts at low temperature region, while lessened that at high temperature, especially at the temperature above 400 °C. Increasing the loading of Mo from 1.5% w/w to 4.5% w/w advanced the maximum catalytic efficiency from 78% to 99% and enlarged the temperature window of the catalyst. The acceptable NO conversion (>60%) was attained at temperature as low as 240 °C for V(1)-W(4.5)-Mo(7.5)/TiO2 catalyst. The presence of Mo promoted the N2O generation. The V(1)-W(4.5)-Mo(0)/TiO2 catalyst showed higher catalytic selectivity for NO compared to the catalysts loading Mo.


2013 ◽  
Vol 774-776 ◽  
pp. 743-746 ◽  
Author(s):  
Ji Wei Peng ◽  
Tao Luan ◽  
Yan Gao

The SCR catalysts were produced with V2O5, WO3, MoO3and anatase type TiO2. The catalyst samples were ground and sieved for 0.3~0.6mm.The NO catalytic efficiency, selectivity against N2O of the catalysts were investigated on a fixed bed reactor under simulated exhaust gas with a typical gas composition. The addition of W enhanced the catalytic efficiency of V(1)-W(x)-Mo (4.5)/TiO2catalysts at high temperature region, while lessened that at low temperature. Increasing the loading of W from 1.5% w/w to 4.5% w/w advanced the maximum catalytic efficiency from 88% to 99% and enlarged the temperature window of the catalyst. The presence of W promoted the N2O generation. The V(1)-W(4.5)-Mo (4.5)/TiO2catalyst showed higher catalytic selectivity for NO compared to the catalysts loading W.


2003 ◽  
Vol 17 (4) ◽  
pp. 874-878 ◽  
Author(s):  
Binlin Dou ◽  
Jinsheng Gao ◽  
Seung Wook Baek ◽  
Xingzhong Sha

Fuel ◽  
2008 ◽  
Vol 87 (15-16) ◽  
pp. 3304-3312 ◽  
Author(s):  
Yuanjing Zheng ◽  
Peter Arendt Jensen ◽  
Anker Degn Jensen

Sign in / Sign up

Export Citation Format

Share Document