catalytic efficiency
Recently Published Documents


TOTAL DOCUMENTS

2205
(FIVE YEARS 753)

H-INDEX

77
(FIVE YEARS 13)

2022 ◽  
Vol 176 ◽  
pp. 114349
Author(s):  
Na Li ◽  
Huan Xia ◽  
Zifu Ni ◽  
Zewang Guo ◽  
Yang Song ◽  
...  
Keyword(s):  

2022 ◽  
Vol 13 (1) ◽  
pp. 092-101
Author(s):  
Jay N Patel ◽  
Fenil A Parmar ◽  
Vivek N Upasani

Advancement in green chemistry has increased the use of microbial hydrolyases in various industries and chemical processes because of high catalytic efficiency, specificity, cost-effectiveness and eco-friendly nature. Bioconversion of tannins such as tannic acid is achieved by tannin acyl hydrolase, also known as tannase. It converts tannic acid into glucose and gallic acid by catalyzing the hydrolysis of ester and depside linkages in tannic acid. Tyrosinase is monophenol and O-diphenol oxidase a copper containing enzyme catalyzes the oxidation of tyrosine and generates different types of pigment such as melanin. Xylanases hydrolyze xylan into its constituent sugar with the help of several debranching enzymes. Microbial strains isolated from various sources were screened for these hydrolyases: Bhavnagar marine salterns (Bacillus megaterium BVUC_01 and Bacillus licheniformis BVUCh_02); Okhamadhi marine salterns Aspergillus versicolor; Spoiled/infected pomegranate (Xenoacremonium falcatum, two strains PGF1 and PGF4, Bacillus velezensisPGF2 and Candida freyschussiiPGF3. The other laboratory maintained bacterial cultures namely, Bacillus subtilis, Pseudomonas aeruginosa, Staphylococcus aureus, Salmonella typhi were also used in this study. Asp. versicolor and Xen. falcatum (PGF1) produced all the three enzymes (tannase, tyrosinase and xylanase). B. licheniformis, B. megaterium, B. subtilis, B. velezensis produced tyrosinase and xylanase. Xen. falcatum (PGF4) and PGF2 produced tannase and xylanase. PGF3 produced tannase and tyrosinase. While, Bacillus megaterium and Salmonella typhi showed only tyrosinase activity. Candida freyschussii showed tannase activity. Staphylococcus aureus did not produce any of these enzymes.


Catalysts ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 92
Author(s):  
Fernanda Guimarães Torres ◽  
Filipe Simões Teodoro ◽  
Leandro Vinícius Alves Gurgel ◽  
Flavien Bourdreux ◽  
Olfa Zayene ◽  
...  

This work describes the application of raw and chemically modified cellulose and sugarcane bagasse for ipso-hydroxylation of aryl boronic acids in environmentally friendly reaction conditions. The catalytic efficiency of five support-[Cu] materials was compared in forming phenols from aryl boronic acids. Our investigation highlights that the CEDA-[Cu] material (6-deoxy-6-aminoethyleneamino cellulose loaded with Cu) leads to the best results under very mild reaction conditions. The optimized catalytic sequence, allowing a facile transformation of boronic acids to phenols, required the mandatory and joint presence of the support, Cu2O, and KOH at room temperature. CEDA-[Cu] was characterized using 13C solid-state NMR, ICP, and FTIR. The use of CEDA-[Cu] accounts for the efficacious synthesis of variously substituted phenol derivatives and presents very good recyclability after five catalytic cycles.


2022 ◽  
Vol 5 (1) ◽  
pp. 16
Author(s):  
Huan Zhang ◽  
Shouqing Liu

Graphene/MoS2 hybrid material was prepared by the hydrothermal method. The hybrid material was characterized by X-ray diffraction spectrum, Raman spectra, transmission electron microscope and UV-vis-NIRS. It was used as a near-infrared photocatalyst to catalyze and degrade Rhodamine B (RhB). The results showed that when the concentration of the RhB solution was 50.0 mg·L–1, the pH value of the solution was 7, the volume of the solution was 50.0 mL, the amount of G/MoS2 catalyst was 0.05 g and near-infrared radiation was carried out for 3 h, the degradation rate of RhB in the 50 mL solution reached 96.5%. When MoS2 was used as the photocatalyst, the degradation rate of RhB was only 75.5%. After 5 times of recycling, the catalytic efficiency of the hybrid photocatalyst was still more than 90%, indicating that the catalyst is very stable.


2022 ◽  
Author(s):  
Hui Yang ◽  
Liwei Li ◽  
Junhong Zhang ◽  
Qing Li ◽  
Li Qiao ◽  
...  

Abstract Background: Over 100 mutations in the SRD5A2 gene have been identified in subjects with 46,XY disorder of sex development (DSD). Exploration of SRD5A2 mutations and elucidation of the molecular mechanisms behind their effects should reveal the functions of the domains of the 5α-reductase 2 enzyme and identify the cause of 46,XY DSD. Previously, we reported a novel compound heterozygous p.Q6X/p.H232R mutation of the SRD5A2 gene in a case with 46,XY DSD. Whether the compound heterozygous p.Q6X/p.H232R mutation in this gene causes 46,XY DSD requires further exploration. Results: To clarify the cause of 46,XY DSD in the affected family focused on here, SRD5A2 sequencing was performed. Heterozygous p.H232R mutation was identified in the proband’s father, so we concluded that this mutation originated from the paternal side of the family and did not cause 46,XY DSD. Meanwhile, heterozygous p.Q6X mutation was identified in the proband’s mother, maternal uncle, and maternal grandfather, indicating that this mutation originated from maternal side of the family and did not cause 46,XY DSD. To clarify the effect of the p.H232R mutation in SRD5A2 on dihydrotestosterone (DHT) production, p.H232R mutant SRD5A2 plasmids were transfected into HEK293 cells. LC-MS indicated that DHT production decreased compared with that in cells transfected with wild-type SRD5A2.Conclusions: Our findings confirmed that the compound heterozygous p.Q6X/p.H232R mutation in the SRD5A2 gene is the cause of 46,XY DSD. p.H232R mutation reduced DHT production while attenuating the catalytic efficiency of the 5α-reductase 2 enzyme.


Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 231
Author(s):  
Yao Cui ◽  
Jixian Wang ◽  
Lei Yu ◽  
Ying Xu ◽  
David J. Young ◽  
...  

Solid supports functionalized with molecular metal catalysts combine many of the advantages of heterogeneous and homogeneous catalysis. A (NNN)Ru-incorporated porous organic polymer (POP-bp/bbpRuCl3) exhibited high catalytic efficiency and broad functional group tolerance in the C–C cross-coupling of secondary and primary alcohols to give β-alkylated secondary alcohols. This catalyst demonstrated excellent durability during successive recycling without leaching of Ru which is ascribed to the strong binding of the pincer ligands to the metal ions.


2022 ◽  
Author(s):  
Shu-Fang Li ◽  
Shen-Yuan Xu ◽  
Ya-Jun Wang ◽  
Yu-Guo Zheng

Abstract Pullulanase is a well-known debranching enzyme that can specially hydrolyze α-1,6-glycosidic linkages in starch and oligosaccharides, however, it suffers from low stability and catalytic efficiency under industrial conditions. In the present study, four sites (A365, V401, H499, and T504) lining the catalytic pocket of Anoxybacillus sp. AR-29 pullulanase PulAR were selected for site-directed mutagenesis (SDM) by using a structure-guided consensus approach. Four beneficial mutants (PulAR-A365V, PulAR-V401C, PulAR-A365/V401C, PulAR-A365V/V401C/T504V, and PulAR-A365V/V401C/T504V/H499A) were created, which showed enhanced thermostability, pH stability, and catalytic efficiency. Among them, the quadruple mutant PulAR-A365V/V401C/T504V/H499A displayed 6.6- and 9.6-fold higher catalytic efficiency toward pullulan at 60 ℃, pH 5.0 and 6.0, respectively. In addition, its thermostabilities at 60 ℃ and 65 ℃ were improved by 2.6- and 3.1-fold, respectively, compared to those of the wild-type (WT). Meanwhile, its pH stabilities at pH 4.5 and 5.0 were 1.6- and 1.8-fold higher than those of WT, respectively. In summary, the catalytic performance of PulAR was significantly enhanced via rational engineering by a structure-guided consensus approach. The resultant quadruple mutant PulAR-A365V/V401C/T504V/H499A demonstrated potential applications in the starch industry.


2022 ◽  
Vol 9 ◽  
Author(s):  
Yutong Zhu ◽  
Xiaofei Xu ◽  
Jian He ◽  
Jie Guo ◽  
Ke Song

High-effective synthesis of 5-hydroxymethylfurfural (HMF) from carbohydrates is an interesting reaction among biomass valorization. The as-synthesized Ti-SBA-15 catalysts with mesoporous structures showed high catalytic efficiency for the conversion of fructose to HMF. Ti-SBA-15 catalysts with different Si/Ti ratios were characterized by characterization techniques such as elemental analysis, XRD, TEM, N2 adsorption–desorption, NH3-TPD, and pyridine-FTIR. The acidity of Ti-SBA-15 catalysts could be tuned by altering addition amount of titanium. The effects of reaction conditions, including reaction time, temperature, and amount of catalyst, on the conversions of fructose and the yields of HMF were also investigated. It is found that Ti-SBA-15 catalysts whose Si/Ti ratio is 120 gave the best yields of HMF, which demonstrated 100% conversion of fructose with a maximum HMF yield of 82% at 140°C after 1 h. In addition, its catalytic performance was retained after 5 recycles in fructose conversion reaction, proving its good catalytic stability.


Sign in / Sign up

Export Citation Format

Share Document