Evaporation heat transfer coefficient and pressure drop of R-1233zd(E) in a brazed plate heat exchanger

2018 ◽  
Vol 130 ◽  
pp. 1147-1155 ◽  
Author(s):  
DongChan Lee ◽  
Dongwoo Kim ◽  
Seonggi Park ◽  
Junyub Lim ◽  
Yongchan Kim
Author(s):  
Yi-Yie Yan ◽  
Tsing-Fa Lin ◽  
Bing-Chwen Yang

The characteristics of evaporation heat transfer and pressure drop for refrigerant R134a flowing in a plate heat exchanger were investigated experimentally in this study. Two vertical counter flow channels were formed in the exchanger by three plates of commercialized geometry with a corrugated sine shape of a chevron angle of 60°. Upflow boiling of refrigerant R134a in one channel receives heat from the hot downflow of water in the other channel. The effects of the heat flux, mass flux, quality and pressure of R134a on the evaporation heat transfer and pressure drop were explored. The preliminary measured data for the water to water single phase convection showed that the heat transfer coefficient in the plate heat exchanger is about 9 times of that in a circular pipe at the same Reynolds number. Even at a very low Reynolds number, the present flow visualization in a plate heat exchanger with the transparent outer plate showed that the flow in the plate heat exchanger remains turbulent. Data for the pressure drop were also examined in detail. It is found that the evaporation heat transfer coefficient of R134a in the plates is quite different from that in circular pipe, particularly in the convective evaporation dominated regime at high vapor quality. Relatively intense boiling on the corrugated surface was seen from the flow visualization. More specifically, the present data showed that both the evaporation heat transfer coefficient and pressure drop increase with the vapor quality. At a higher mass flux the pressure drop is higher for the entire range of the vapor quality but the heat transfer is only better at high quality. Raising the imposed wall heat flux was found to slightly improve the heat transfer. While at a higher system pressure the heat transfer and pressure drop are both slightly lower.


1999 ◽  
Vol 121 (1) ◽  
pp. 118-127 ◽  
Author(s):  
Y.-Y. Yan ◽  
T.-F. Lin

The evaporation heat transfer coefficient and pressure drop for refrigerant R-134a flowing in a plate heat exchanger were investigated experimentally in this study. Two vertical counterflow channels were formed in the exchanger by three plates of commercial geometry with a corrugated sine shape of a chevron angle of 60 deg. Upflow boiling of refrigerant R-134a in one channel receives heat from the hot downflow of water in the other channel. The effects of the mean vapor quality, mass flux, heat flux, and pressure of R-134a on the evaporation heat transfer and pressure drop were explored. The quality change of R-134a between the inlet and outlet of the refrigerant channel ranges from 0.09 to 0.18. Even at a very low Reynolds number, the present flow visualization of evaporation in a plate heat exchanger with the transparent outer plate showed that the flow in the plate heat exchanger remains turbulent. It is found that the evaporation heat transfer coefficient of R-134a in the plates is much higher than that in circular pipes and shows a very different variation with the vapor quality from that in circular pipes, particularly in the convective evaporation dominated regime at high vapor quality. Relatively intense evaporation on the corrugated surface was seen from the flow visualization. Moreover, the present data showed that both the evaporation heat transfer coefficient and pressure drop increase with the vapor quality. At a higher mass flux the pressure drop is higher for the entire range of the vapor quality but the evaporation heat transfer is clearly better only at the high quality. Raising the imposed wall heat flux was found to slightly improve the heat transfer, while at a higher refrigerant pressure, both the heat transfer and pressure drop are slightly lower. Based on the present data, empirical correlations for the evaporation heat transfer coefficient and friction factor were proposed.


1968 ◽  
Vol 32 (11) ◽  
pp. 1127-1132,a1 ◽  
Author(s):  
Katsuto Okada ◽  
Minobu Ono ◽  
Toshio Tomimum ◽  
Hirotaka Konno ◽  
Shigemori Ohtani

2007 ◽  
Vol 72 (8-9) ◽  
pp. 833-846 ◽  
Author(s):  
Emila Djordjevic ◽  
Stephan Kabelac ◽  
Slobodan Serbanovic

In this study the transfer coefficient of evaporation heat of the refrigerant 1,1,1,2-tetrafluoroethane (R-134a) in a vertical plate heat exchanger was experimentally investigated. The results are presented as the dependancy of the mean heat transfer coefficient for the whole heat exchanger on the mean vapor quality. The influences of mass flux, heat flux and flow configuration on the heat transfer coefficient were also taken into account and a comparison with previously published experimental data and literature correlations was made. .


Author(s):  
Rajinder Singh ◽  
Surendra Singh Kachhwaha

The present study reports the experimental validation of thermohydraulic modeling for prediction of pressure drop and heat transfer coefficient. Experiments were performed on plate heat exchanger using chilled water and ice slurry as secondary fluids. Propylene glycol (PG) and mono-ethylene glycol (MEG) are used as depressants (10%, 20%, 30%, and 40% concentration) in ice slurry formation. The results show that thermohydraulic modeling predicts the pressure drop and overall heat transfer coefficient for water to water and water to ice slurry within the discrepancy limit of ±15%.


2016 ◽  
Vol 37 (3) ◽  
pp. 19-29 ◽  
Author(s):  
Janusz T. Cieśliński ◽  
Artur Fiuk ◽  
Krzysztof Typiński ◽  
Bartłomiej Siemieńczuk

Abstract This study is focused on experimental investigation of selected type of brazed plate heat exchanger (PHEx). The Wilson plot approach was applied in order to estimate heat transfer coefficients for the PHEx passages. The main aim of the paper was to experimentally check ability of several correlations published in the literature to predict heat transfer coefficients by comparison experimentally obtained data with appropriate predictions. The results obtained revealed that Hausen and Dittus-Boelter correlations underestimated heat transfer coefficient for the tested PHEx by an order of magnitude. The Aspen Plate code overestimated heat transfer coefficient by about 50%, while Muley-Manglik correlation overestimated it from 1% to 25%, dependent on the value of Reynolds number and hot or cold liquid side.


2009 ◽  
Vol 74 (4) ◽  
pp. 427-440 ◽  
Author(s):  
Emila Zivkovic ◽  
Stephan Kabelac ◽  
Slobodan Serbanovic

The evaporation heat transfer coefficient of the refrigerant R-134a in a vertical plate heat exchanger was investigated experimentally. The area of the plate was divided into several segments along the vertical axis. For each of the segments, the local value of the heat transfer coefficient was calculated and presented as a function of the mean vapor quality in the segment. Owing to the thermocouples installed along the plate surface, it was possible to determine the temperature distribution and vapor quality profile inside the plate. The influences of the mass flux, heat flux, pressure of system and the flow configuration on the heat transfer coefficient were also taken into account and a comparison with literature data was performed.


Sign in / Sign up

Export Citation Format

Share Document