scholarly journals Studies on the Heat Transfer Coefficient and Pressure Drop of Several Kinds of Plate Heat Exchanger

1968 ◽  
Vol 32 (11) ◽  
pp. 1127-1132,a1 ◽  
Author(s):  
Katsuto Okada ◽  
Minobu Ono ◽  
Toshio Tomimum ◽  
Hirotaka Konno ◽  
Shigemori Ohtani
2008 ◽  
Vol 62 (1) ◽  
Author(s):  
Emila Djordjević ◽  
Stephan Kabelac ◽  
Slobodan Šerbanović

AbstractThe condensation heat transfer coefficient and the two-phase pressure drop of refrigerant R-134a in a vertical plate heat exchanger were investigated experimentally. The area of the plate was divided into several segments along the vertical axis. For each of the segments, local values of the heat transfer coefficient and frictional pressure drop were calculated and presented as a function of the mean vapor quality in the segment. Owing to the thermocouples installed along the plate surface, it was possible to determine the temperature distribution and vapor quality profile inside the plate. The influences of the mass flux and the heat flux on the heat transfer coefficient and the pressure drop were also taken into account and a comparison with previously published experimental data and literature correlations was carried out.


2014 ◽  
Vol 552 ◽  
pp. 55-60
Author(s):  
Zheng Ming Tong ◽  
Peng Hou ◽  
Gui Hua Qin

In this article, we use BR0.3 type plate heat exchanger for experiment,and the heat transfer coefficient of the mixed plate heat exchanger is explored. Through the test platform of plate heat exchanger, a large number of experiments have been done in different mixed mode but the same passageway,and lots experimental data are obtained. By the linear fitting method and the analysis of the data, the main factors which influence the heat transfer coefficient of mixed plate heat exchanger were carried out,and the formula of heat transfer coefficient which fits at any mixed mode plate heat exchanger is obtained, to solve the problem of engineering calculation.The fact , there is no denying that the result which we get has great engineering significance


Author(s):  
Rajinder Singh ◽  
Surendra Singh Kachhwaha

The present study reports the experimental validation of thermohydraulic modeling for prediction of pressure drop and heat transfer coefficient. Experiments were performed on plate heat exchanger using chilled water and ice slurry as secondary fluids. Propylene glycol (PG) and mono-ethylene glycol (MEG) are used as depressants (10%, 20%, 30%, and 40% concentration) in ice slurry formation. The results show that thermohydraulic modeling predicts the pressure drop and overall heat transfer coefficient for water to water and water to ice slurry within the discrepancy limit of ±15%.


Author(s):  
Yi-Yie Yan ◽  
Tsing-Fa Lin ◽  
Bing-Chwen Yang

The characteristics of evaporation heat transfer and pressure drop for refrigerant R134a flowing in a plate heat exchanger were investigated experimentally in this study. Two vertical counter flow channels were formed in the exchanger by three plates of commercialized geometry with a corrugated sine shape of a chevron angle of 60°. Upflow boiling of refrigerant R134a in one channel receives heat from the hot downflow of water in the other channel. The effects of the heat flux, mass flux, quality and pressure of R134a on the evaporation heat transfer and pressure drop were explored. The preliminary measured data for the water to water single phase convection showed that the heat transfer coefficient in the plate heat exchanger is about 9 times of that in a circular pipe at the same Reynolds number. Even at a very low Reynolds number, the present flow visualization in a plate heat exchanger with the transparent outer plate showed that the flow in the plate heat exchanger remains turbulent. Data for the pressure drop were also examined in detail. It is found that the evaporation heat transfer coefficient of R134a in the plates is quite different from that in circular pipe, particularly in the convective evaporation dominated regime at high vapor quality. Relatively intense boiling on the corrugated surface was seen from the flow visualization. More specifically, the present data showed that both the evaporation heat transfer coefficient and pressure drop increase with the vapor quality. At a higher mass flux the pressure drop is higher for the entire range of the vapor quality but the heat transfer is only better at high quality. Raising the imposed wall heat flux was found to slightly improve the heat transfer. While at a higher system pressure the heat transfer and pressure drop are both slightly lower.


2009 ◽  
Vol 74 (4) ◽  
pp. 427-440 ◽  
Author(s):  
Emila Zivkovic ◽  
Stephan Kabelac ◽  
Slobodan Serbanovic

The evaporation heat transfer coefficient of the refrigerant R-134a in a vertical plate heat exchanger was investigated experimentally. The area of the plate was divided into several segments along the vertical axis. For each of the segments, the local value of the heat transfer coefficient was calculated and presented as a function of the mean vapor quality in the segment. Owing to the thermocouples installed along the plate surface, it was possible to determine the temperature distribution and vapor quality profile inside the plate. The influences of the mass flux, heat flux, pressure of system and the flow configuration on the heat transfer coefficient were also taken into account and a comparison with literature data was performed.


2013 ◽  
Vol 832 ◽  
pp. 254-259 ◽  
Author(s):  
M.M. Elias ◽  
Saidur Rahman ◽  
N.A. Rahim ◽  
M.R. Sohel ◽  
I.M. Mahbubul

Plate heat exchanger with chevron angle has higher heat transfer area than flat type and increases the level of turbulent due to its corrugated channel. In this study, both water and nanofluid were used to determine the heat transfer coefficient and rate, pumping power, and pressure drop. A commercial plate heat exchanger with two different symmetric (300/300,600/600) and one mixed (300/600) chevron angle plates were considered for analysis. Al2O3and SiO2nanoparticles with 0-1 vol. % concentration were used with water. From the analysis it was found that, convective heat transfer coefficient, heat transfer rate, pressure drop and pumping power increases with the increase of volume concentration. Moreover, the above parameters were found to be higher for 600/600chevron angle plates. A correlation of Nusselt number as a function of Reynolds number and Prandtl number for different chevron angles needs to be obtained based on experimental and analytical work. Nomenclature


This paper presents an experimental study on heat transfer rate for ethylene glycol using a flat plate heat exchanger and various corrugation angles of corrugated plate heat exchanger. Experimental set up provided with thermocouples to measure the temperatures along the length of each plate at seven locations. Additionally, four thermocouples were used to measure the inlet as well as outlet temperature of test fluid and hot fluid. Water was used as a hot fluid at constant temperature of 75°C and Ethylene glycol was used as a test fluid in a counter-current flow mode. The fluids flow rates were varied from 0.5 lpm to 4.5 lpm and the corresponding temperatures are measured. From the experimental readings, the heat transfer coefficient and Nusselt numbers were calculated for flat plate and corrugated plate exchangers. The heat transfer coefficient values and Nusselt numbers were compared with the corrugation angles (30 0 , 400 ) of corrugated plate and flat plate heat exchangers. The heat transfer coefficient and Nusselt number enhances for corrugated plate with increasing in Reynolds number. The improvement in values is due to the high heat transfer rate caused by turbulence at the corrugation angle. Furthermore, as the increase of mass flow rate, gradual decrement observed for the heating effectiveness in corrugated plate as well as flat plate heat exchanger. This drop of effectiveness is due to decrease of time contact between the two fluids.


2021 ◽  
pp. 1-19
Author(s):  
Muhammad Ahmad Jamil ◽  
Talha S. Goraya ◽  
Haseeb Yaqoob ◽  
Muhammad Wakil Shahzad ◽  
Syed M. Zubair

Sign in / Sign up

Export Citation Format

Share Document