Aerobic environments in combination with substrate additions to soil significantly reshape depth-dependent microbial distribution patterns in Zoige peatlands, China

2022 ◽  
Vol 170 ◽  
pp. 104252
Author(s):  
Jianqing Tian ◽  
Liangfeng Liu ◽  
Huai Chen ◽  
Lei Zhong ◽  
Xiaoqi Zhou ◽  
...  
2019 ◽  
Author(s):  
Di Liu ◽  
Qinglin Chen ◽  
Pangzhen Zhang ◽  
Deli Chen ◽  
Kate S. Howell

AbstractThe flavours of foods and beverages are formed by the agricultural environment where the plants are grown. In the case of wine, the location and environmental features of the vineyard site imprint the wine with distinctive aromas and flavours. Microbial growth and metabolism play an integral role in wine production from the vineyard to the winery, by influencing grapevine health, wine fermentation, and the flavour, aroma and quality of finished wines. The mechanism by which microbial distribution patterns drive wine metabolites is unclear and while flavour has been correlated with bacterial composition for red wines, bacterial activity provides a minor biochemical conversion in wine fermentation. Here, we collected samples across six distinct winegrowing areas in southern Australia to investigate regional distribution patterns of both fungi and bacteria and how this corresponds with wine aroma compounds. Results show that soil and must microbiota distinguish winegrowing regions and are related to wine chemical profiles. We found a strong relationship between microbial and wine metabolic profiles, and this relationship was maintained despite differing abiotic drivers (soil properties and weather/ climatic measures). Notably, fungal communities played the principal role in shaping wine aroma profiles and regional distinctiveness. We found that the soil microbiome is a potential source of grape- and must-associated fungi, and therefore the weather and soil conditions could influence the wine characteristics via shaping the soil fungal community compositions. Our study describes a comprehensive scenario of wine microbial biogeography in which microbial diversity responds to surrounding environments and ultimately sculpts wine aromatic characteristics. These findings provide perspectives for thoughtful human practices to optimise food and beverage flavour and composition through understanding of fungal activity and abundance.


2020 ◽  
Author(s):  
Fu Chen ◽  
Jing Ma

<p>Understanding the interactions among different soil microbial species and how they responded to reclamation is essential to ecological restoration and the land development. In this study, we investigated the bacterial distribution in different reclamation sites and constructed molecular ecological networks to reveal the interactions among soil bacterial communities along the reclamation timeline. The relationship between the microbial network module and environmental factors were also analyzed. Bacterial community diversity and composition changed dramatically along the reclamation timeline. PCA and NMDS analysis showed the microbial distribution patterns varied along the reclamation years. Additionally, based on the network profile, phyla Acidobacteria, Planctomycetes and Proteobacteria were distinguished as the key microbial populations in most reclamation sites. Moreover, different network structures were significantly correlated with different soil properties, such as pH value, soil organic matter, soil dehydrogenase and urease activity, which implied that microbial network interactions might influence the soil ecological functions. The variation of the network complexity along the reclamation years revealed that the microbial development and the persistent agricultural utilization promoted the land development of the reclaimed soil in disturbed mining area. Overall, our findings could provide some information of how microorganisms changed along the increasing reclamation time, and how they responded to reclamation activity by regulating their interactions in different ecosystems.</p>


2015 ◽  
Vol 81 (18) ◽  
pp. 6120-6128 ◽  
Author(s):  
Janus A. J. Haagensen ◽  
Susse K. Hansen ◽  
Bjarke B. Christensen ◽  
Sünje J. Pamp ◽  
Søren Molin

ABSTRACTConfined spatial patterns of microbial distribution are prevalent in nature, such as in microbial mats, soil communities, and water stream biofilms. The symbiotic two-species consortium ofPseudomonas putidaandAcinetobactersp. strain C6, originally isolated from a creosote-polluted aquifer, has evolved a distinct spatial organization in the laboratory that is characterized by an increased fitness and productivity. In this consortium,P. putidais reliant on microcolonies formed byAcinetobactersp. C6, to which it attaches. Here we describe the processes that lead to the microcolony pattern byAcinetobactersp. C6. Ecological spatial pattern analyses revealed that the microcolonies were not entirely randomly distributed and instead were arranged in a uniform pattern. Detailed time-lapse confocal microscopy at the single-cell level demonstrated that the spatial pattern was the result of an intriguing self-organization: small multicellular clusters moved along the surface to fuse with one another to form microcolonies. This active distribution capability was dependent on environmental factors (carbon source and oxygen) and historical contingency (formation of phenotypic variants). The findings of this study are discussed in the context of species distribution patterns observed in macroecology, and we summarize observations about the processes involved in coadaptation betweenP. putidaandAcinetobactersp. C6. Our results contribute to an understanding of spatial species distribution patterns as they are observed in nature, as well as the ecology of engineered communities that have the potential for enhanced and sustainable bioprocessing capacity.


2010 ◽  
Vol 63 ◽  
pp. 15-23
Author(s):  
I.C. Hallett ◽  
K.S.H. Boyd-Wilson ◽  
K.R. Everett

Microscopebased observation of surface microbes can support indirect techniques such as culturing or DNA analysis of surface washings by illustrating microbial distribution patterns interrelationships and the presence of unculturable or nonrecovered organisms Comparisons have been made between techniques of contrasting complexity For example surface replicas of the leaf made from transparent materials and scanning electron microscopy (SEM) were compared for their ability to present an accurate picture of the leaf surface and microbial populations Environmental SEM (ESEM) and cryoSEM minimise change and provide the most realistic and detailed images of the surface but have logistical difficulties Conventional critical point dried SEM samples even with extra processing and some physical change usually provided similar results and had advantages in handling The simpler replica techniques retained microbial number and distribution when compared to ESEM but were poor with rough surfaces Microbial material on replicas could be stained or labelled with antibodies to improve identification


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10653
Author(s):  
Prinpida Sonthiphand ◽  
Pasunun Rattanaroongrot ◽  
Kasarnchon Mek-yong ◽  
Kanthida Kusonmano ◽  
Chalida Rangsiwutisak ◽  
...  

The microbiomes of deep and shallow aquifers located in an agricultural area, impacted by an old tin mine, were explored to understand spatial variation in microbial community structures and identify environmental factors influencing microbial distribution patterns through the analysis of 16S rRNA and aioA genes. Although Proteobacteria, Cyanobacteria, Actinobacteria, Patescibacteria, Bacteroidetes, and Epsilonbacteraeota were widespread across the analyzed aquifers, the dominant taxa found in each aquifer were unique. The co-dominance of Burkholderiaceae and Gallionellaceae potentially controlled arsenic immobilization in the aquifers. Analysis of the aioA gene suggested that arsenite-oxidizing bacteria phylogenetically associated with Alpha-, Beta-, and Gamma proteobacteria were present at low abundance (0.85 to 37.13%) and were more prevalent in shallow aquifers and surface water. The concentrations of dissolved oxygen and total phosphorus significantly governed the microbiomes analyzed in this study, while the combination of NO3--N concentration and oxidation-reduction potential significantly influenced the diversity and abundance of arsenite-oxidizing bacteria in the aquifers. The knowledge of microbial community structures and functions in relation to deep and shallow aquifers is required for further development of sustainable aquifer management.


mSphere ◽  
2020 ◽  
Vol 5 (4) ◽  
Author(s):  
Di Liu ◽  
Qinglin Chen ◽  
Pangzhen Zhang ◽  
Deli Chen ◽  
Kate S. Howell

ABSTRACT The flavors of fermented plant foods and beverages are formed by microorganisms, and in the case of wine, the location and environmental features of the vineyard site also imprint the wine with distinctive aromas and flavors. Microbial growth and metabolism play an integral role in wine production, by influencing grapevine health, wine fermentation, and the flavor, aroma, and quality of finished wines. The contributions by which microbial distribution patterns drive wine metabolites are unclear, and while flavor has been correlated with fungal and bacterial composition for wine, bacterial activity provides fewer sensorially active biochemical conversions than fungi in wine fermentation. Here, we collected samples across six distinct wine-growing areas in southern Australia to investigate regional distribution patterns of fungi and bacteria and the association with wine chemical composition. Results show that both soil and must microbiota distinguish wine-growing regions. We found a relationship between microbial and wine metabolic profiles under different environmental conditions, in particular measures of soil properties and weather. Fungal communities are associated with wine regional distinctiveness. We found that the soil microbiome is a source of grape- and must-associated fungi and suggest that weather and soil could influence wine characteristics via the soil fungal community. Our report describes a comprehensive scenario of wine microbial biogeography where microbial diversity responds to the surrounding environment and correlates with wine composition and regional characteristics. These findings provide perspectives for thoughtful human practices to optimize food composition through understanding fungal activity and abundance. IMPORTANCE The composition of soil has long been thought to provide wine with characteristic regional flavors. Here, we show that for vineyards in southern Australia, the soil fungal communities are of primary importance for the aromas found in wines. We propose a mechanism by which fungi can move from the soil through the vine.


2006 ◽  
Vol 14 (5) ◽  
pp. 355-364 ◽  
Author(s):  
Janir Alves Soares ◽  
Mário Roberto Leonardo ◽  
Léa Assed Bezerra da Silva ◽  
Mário Tanomaru Filho ◽  
Izabel Yoko Ito

OBJECTIVE: The purpose of this study was to evaluate the distribution of microorganisms in the root canal system (RCS) and periapical lesions of dogs' teeth after rotary instrumentation and placement of different calcium hydroxide [Ca(OH)2]-based intracanal dressings. MATERIALS AND METHODS: Chronic periapical lesions were experimentally induced in 80 premolar roots of four dogs. Instrumentation was undertaken using the ProFile rotary system and irrigation with 5.25% sodium hypochlorite. The following Ca(OH)2-based pastes were applied for 21 days: group 1 - Calen (n=18); group 2 - Calen+CPMC (n=20); group 3 - Ca(OH)2 p.a. + anaesthetic solution (n=16) and group 4 - Ca(OH)2 p.a.+ 2% chlorhexidine digluconate (n=18). Eight root canals without endodontic treatment constituted the control group. Histological sections were obtained and stained with Brown & Brenn staining technique to evaluate the presence of microorganisms in the main root canal, ramifications of the apical delta and secondary canals, apical cementoplasts, dentinal tubules, areas of cemental resorption and periapical lesions. The results were analyzed statistically by the Mann-Whitney U test (p<0.05). RESULTS: The control group showed the highest prevalence of microorganisms in all sites evaluated. Gram-positive cocci, bacilli and filaments were the most frequent morphotypes. Similar microbial distribution patterns in the RCS and areas of cementum resorption were observed in all groups (p>0.05). The percentage of RCS sites containing microorganisms in groups 1, 2, 3, 4 and control were: 67.6%, 62.5%, 78.2%, 62.0% and 87.6%, respectively. CONCLUSION: In conclusion, the histomicrobiological analysis showed that the rotary instrumentation and the different calcium hydroxide pastes employed did not effectively eliminate the infection from the RCS and periapical lesions. However, several bacteria seen in the histological sections were probably dead or were inactivated by the biomechanical preparation and calcium hydroxide-based intracanal dressing.


2020 ◽  
Vol 13 (2) ◽  
pp. 112-121
Author(s):  
Sudiyar . ◽  
Okto Supratman ◽  
Indra Ambalika Syari

The destructive fishing feared will give a negative impact on the survival of this organism. This study aims to analyze the density of bivalves, distribution patterns, and to analyze the relationship of bivalves with environmental parameters in Tanjung Pura village. This research was conducted in March 2019. The systematic random system method was used for collecting data of bivalves. The collecting Data retrieval divided into five research stasions. The results obtained 6 types of bivalves from 3 families and the total is 115 individuals. The highest bivalve density is 4.56 ind / m², and the lowest bivalves are located at station 2,1.56 ind / m²,  The pattern of bivalve distribution in the Coastal of Tanjung Pura Village is grouping. The results of principal component analysis (PCA) showed that Anadara granosa species was positively correlated with TSS r = 0.890, Dosinia contusa, Anomalocardia squamosa, Mererix meretrix, Placamen isabellina, and Tellinella spengleri were positively correlated with currents r = 0.933.


Sign in / Sign up

Export Citation Format

Share Document