oxidation reduction
Recently Published Documents


TOTAL DOCUMENTS

4079
(FIVE YEARS 543)

H-INDEX

99
(FIVE YEARS 12)

2022 ◽  
Author(s):  
Taeho Kwon ◽  
Ying-Hao Han ◽  
Xin-Mei He ◽  
Ying-Ying Mao ◽  
Xuan-Chen Liu ◽  
...  

Abstract The incidence of liver diseases has been increasing steadily. However, it has some shortcomings, such as high cost and organ donor scarcity. The application of stem cell research has brought new ideas for the treatment of liver diseases. Therefore, it is particularly important to clarify the molecular and regulatory mechanisms of differentiation of bone marrow-derived stem cells (BMSCs) into liver cells. Herein, we screened differentially expressed genes between hepatocytes and untreated BMSCs to identify the genes responsible for the differentiation of BMSCs into hepatocytes. GSE30419 gene microarray data of BMSCs and GSE72088 gene microarray data of primary hepatocytes were obtained from the Gene Expression Omnibus database. Transcriptome Analysis Console software showed that 1896 genes were upregulated and 2506 were downregulated in hepatocytes as compared with BMSCs. Hub genes were analyzed using the STRING, revealing that two hub genes, Cat and Cyp2e1, play a pivotal role in oxidation-reduction process. The results indicate that the lncRNA-miRNA-mRNA interaction chain may play an important role in the differentiation of BMSCs into hepatocytes, which provides a new therapeutic target for liver disease treatment.


Micromachines ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 122
Author(s):  
Jianjun Yang ◽  
Xiaobao Yu ◽  
Yaxin Li ◽  
Guilin Cheng ◽  
Zichuan Yi ◽  
...  

Traditional dye-sensitized solar cells (DSSC) use FTO/ITO containing expensive rare elements as electrodes, which are difficult to meet the requirements of flexibility. A new type of flexible DSSC structure with all-metal electrodes without rare elements is proposed in this paper. Firstly, a light-receiving layer was prepared outside the metal photoanode with small holes to realize the continuous oxidation-reduction reaction in the electrolyte; Secondly, the processing technology of the porous titanium dioxide (TiO2) film was analyzed. By testing the J–V characteristics, it was found that the performance is better when the heating rate is slow. Finally, the effects of different electrode material combinations were compared through experiments. Our results imply that in the case of all stainless-steel electrodes, the open-circuit voltage can reach 0.73 V, and in the case of a titanium photoanode, the photoelectric conversion efficiency can reach 3.86%.


2022 ◽  
Author(s):  
Waresi Tuersong ◽  
Caixian Zhou ◽  
Simin WU ◽  
Peixi Qin ◽  
Chunqun Wang ◽  
...  

Abstract Background: Ivermectin (IVM) is one of the most important and widely used anthelmintics in veterinary medicine. However, its efficacy is increasingly compromised by widespread resistance, and the exact mechanism of IVM resistance remains unclear for most parasitic nematodes including Haemonchus contortus, a blood-sucking parasitic nematode of small ruminants.Methods: In this study, we isolated and assessed an IVM resistant strain from Zhaosu, Xinjiang, China. Subsequently, the comparative analyses on transcriptomics of IVM susceptible and resistant H. contortus adult worms were carried out using RNA sequencing and bioinformatics.Results: In total, 543 and 359 differentially expressed genes (DEGs) were identified in male and female adult worms of the resistant strain compared with the susceptible strain, respectively. The DEGs encode molecules involved in receptor activities, transport, detoxification, lipid metabolism and cuticle collagen formation. In addition, Gene Ontology (GO) analysis revealed that transcriptional changes were dominant in genes associated with ligand-gated channel activity, oxidation-reduction process, lipid metabolic process, and structural constituent of cuticle. The results support previous proposal that the IVM resistant mechanism of H. contortus involved in both neuromuscular and non-neuromuscular pathways. Finally, the quantitative RT-PCR results confirmed that the transcriptional profiles of selected DEGs (male: 8 genes, female: 10 genes) were consistent with those obtained by the RNA-Seq.Conclusions: The findings from this work provided valuable information for further studies on the IVM resistance in H. contortus.


2022 ◽  
Author(s):  
Rebecca Wilson ◽  
Victor Yuan ◽  
Jennifer Alexander Courtney ◽  
Alyssa Tipler ◽  
James Cnota ◽  
...  

Congenital heart disease (CHD) is often associated with fetal growth abnormalities. During the first trimester of pregnancy, the heart and placenta develop concurrently, and share key developmental pathways. Hence, it is hypothesized that defective morphogenesis of either organ is synergistically linked. However, many studies determined to understand the mechanisms behind CHD overlook the contribution of the placenta. In this study, we aimed to identify commonly expressed genes between first trimester heart and placenta cells using two publicly available single cell sequencing databases. Using a systematic computational approach, we identified 328 commonly expressed genes between heart and placenta endothelial cells and enrichment in pathways including Vasculature Development (GO:0001944, FDR 2.90E-30), and Angiogenesis (GO:0001525, FDR 1.18E-27). We also found, in comparison with fetal heart endothelial cells, 197 commonly expressed genes with placenta extravillous trophoblasts, 128 with cytotrophoblasts and 80 with syncytiotrophoblasts, and included genes such as FLT1, GATA2, ENG and CDH5. Finally, comparison of first trimester cardiomyocytes and placenta cytotrophoblasts revealed 53 commonly expressed genes and enrichment in biological processes integral to cellular function including Cellular Respiration (GO:0045333; FDR 5.05E-08), Ion Transport (GO:0006811; FDR 2.08E-02), and Oxidation-Reduction Process (GO:0055114; FDR 1.58E-07). Overall, our results identify specific genes and cellular pathways common between first trimester fetal heart and placenta cells which if disrupted may concurrently contribute to the developmental perturbations resulting in CHD.


Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 361
Author(s):  
Joanna B. Kisała ◽  
Gerald Hörner ◽  
Adriana Barylyak ◽  
Dariusz Pogocki ◽  
Yaroslav Bobitski

In present work, we examine the photocatalytic properties of S-doped TiO2 (S1, S2) compared to bare TiO2 (S0) in present work. The photocatalytic tests were performed in alkaline aqueous solutions (pH = 10) of three differently substituted phenols (phenol (I), 4,4′-isopropylidenebisphenol (II), and 4,4′-isopropylidenebis(2,6-dibromophenol) (III)). The activity of the catalysts was evaluated by monitoring I, II, III degradation in the reaction mixture. The physicochemical properties (particle size, ζ-potential, Ebg, Eu, E0cb, E0vb, σo, KL) of the catalysts were established, and we demonstrated their influence on degradation reaction kinetics. Substrate degradation rates are consistent with first-order kinetics. The apparent conversion constants of the tested compounds (kapp) in all cases reveal the sulfur-loaded catalyst S2 to show the best photocatalytic activity (for compound I and II S1 and S2 are similarly effective). The different efficiency of photocatalytic degradation I, II and III can be explained by the interactions between the catalyst and the substrate solution. The presence of bromine substituents in the benzene ring additionally allows reduction reactions. The yield of bromide ion release in the degradation reaction III corresponds to the Langmuir constant. The mixed oxidation-reduction degradation mechanism results in higher degradation efficiency. In general, the presence of sulfur atoms in the catalyst network improves the degradation efficiency, but too much sulfur is not desired for the reduction pathway.


2022 ◽  
Author(s):  
Seung-Hee Hong ◽  
Chang-Gu Lee ◽  
Seong-Jik Park

Abstract This work investigates the applicability of thermally treated calcium-rich clay minerals (CRCMs), such as sepiolite (SPL), attapulgite (ATT), and dolomite (DLM) to hinder the nitrogen (N) and phosphorus (P) release from river sediments. A non-woven fabric mat (NWFM) or a sand layer were also capped as armor layers, i.e., placed over CRCMs to investigate the capping impact on the N/P release. The capping efficiency was evaluated in a cylindrical reactor, consisting of CRCMs, armor layers, sediments, and sampled water. We monitored N/P concentrations, dissolved oxygen (DO), oxidation reduction potential, pH, and electric conductivity in overlying water over 70 days. The DO concentrations in the uncapped and capped conditions were preserved for 30 days and 70 days (until the end of experiment duration), respectively. ATT showed higher efficiency for NH4-N and T-N than the other two materials, and the capping efficiency of NH4-N was measured as 96.4%, 93.7%, and 61.6% when capped with 2 cm sand layer, 1 cm sand layer, and NWFM layer, respectively. DLM showed a superior rejection capability of PO4-P to ATT and SPL, reported as 97.2% when capped with 2 cm sand armor. The content of weakly adsorbed-P was lower in the uncapped condition than in the capping condition. It can be concluded that ATT and DLM can be used as capping agents to deactivate N and P, respectively, to reduce water contamination from sediments of the eutrophic river.


2022 ◽  
Vol 334 ◽  
pp. 04015
Author(s):  
Daria Vladikova ◽  
Blagoy Burdin ◽  
Asrar Sheikh ◽  
Paolo Piccardo ◽  
Milena Krapchanska ◽  
...  

This work aims at development of Accelerated Stress Tests for SOFC via artificial aging of the fuel electrode applying chemical and electrochemical (hydrogen starvation) redox cycling. In principle the degradation processes follows that of calendar aging (Ni coarsening and migration), but in addition it can bring to irreversible damages caused by the development of cracks at the interface anode/electrolyte due to the expansion/shrinkage of the Ni network. The challenge is to introduce conditions which will prevent the formation of cracks which can be done by partial oxidation. The advantage of the proposed methodology is that a mild level of oxidation can be regulated by direct impedance monitoring of the Ni network resistance changes during oxidation/reduction. Once the redox cycling conditions are fixed on bare anode and checked on anode/electrolyte sample for eventual cracks, the procedure can be introduced for AST in full cell configuration. The developed methodology is evaluated by comparative impedance analysis of artificially aged and calendar aged button cells. The results for 20 redox cycles which can be performed for 24 hours are comparable with those obtained for about 1600 hours operation in standard conditions which ensures more than 50 times acceleration.


2022 ◽  
Vol 111 ◽  
pp. 1-10
Author(s):  
Sichao Li ◽  
Wenjun Huang ◽  
Haomiao Xu ◽  
Kai Liu ◽  
Jia-nan Wang ◽  
...  

2022 ◽  
Vol 29 (1) ◽  
Author(s):  
Richard Husar ◽  
Thomas Dumas ◽  
Michel L. Schlegel ◽  
Daniel Schlegel ◽  
Dominique Guillaumont ◽  
...  

A spectroelectrochemical setup has been developed to investigate radioactive elements in small volumes (0.7 to 2 ml) under oxidation–reduction (redox) controlled conditions by X-ray absorption spectroscopy (XAS). The cell design is presented together with in situ XAS measurements performed during neptunium redox reactions. Cycling experiments on the NpO2 2+/NpO2 + redox couple were applied to qualify the cell electrodynamics using XANES measurements and its ability to probe modifications in the neptunyl hydration shell in a 1 mol l−1 HNO3 solution. The XAS results are in agreement with previous structural studies and the NpO2 2+/NpO2 + standard potential, determined using Nernst methods, is consistent with measurements based on other techniques. Subsequently, the NpO2 +, NpO2 2+ and Np4+ ion structures in solution were stabilized and measured using EXAFS. The resulting fit parameters are again compared with other results from the literature and with theoretical models in order to evaluate how this spectroelectrochemistry experiment succeeds or fails to stabilize the oxidation states of actinides. The experiment succeeded in: (i) implementing a robust and safe XAS device to investigate unstable radioactive species, (ii) evaluate in a reproducible manner the NpO2 2+/NpO2 + standard potential under dilute conditions and (iii) clarify mechanistic aspects of the actinyl hydration sphere in solution. In contrast, a detailed comparison of EXAFS fit parameters shows that this method is less appropriate than the majority of the previously reported chemical methods for the stabilization of the Np4+ ion.


2021 ◽  
Vol 6 (2) ◽  
pp. 202-212
Author(s):  
Rabiatul Adawiyah ◽  
Susilawati Susilawati ◽  
Lenny Anwar S

This research aims to develop an interactive e-module on redox concept. Research and Development (R&D) method was used in this study with a Plomp model. This model included three phases: preliminary, prototype or development, and assessment. Validation sheets and response questionnaires were used as research instruments. Six expert lecturers, consisting of three media and materials experts each, assessed the validity sheets. A small-scale test was carried out utilizing two approaches; a one-to-one test and a small group test. A one-to-one test was given to three students who had high, medium, and low abilities; while the small group test was conducted on three teachers and 30 students from three different schools, which are MAN 2 Pekanbaru, MAN 1 Pekanbaru, and SMA IT Al-fitiyah. The results showed that the interactive e-module was very valid and could be used in learning activities. This is indicated by the percentage of validation from material experts 89.27% and media experts 88.76%. In a small-scale trial for a one-on-one test, the teacher's response 95.83% with very practical criteria; and student response test 87.73% with interesting criteria.


Sign in / Sign up

Export Citation Format

Share Document