Environmental impacts of brass mesh nets on open ocean aquaculture pens in tropical marine environments

Aquaculture ◽  
2020 ◽  
Vol 524 ◽  
pp. 735266
Author(s):  
Tyler Sclodnick ◽  
Steve Sutton ◽  
Thomas Selby ◽  
Robert Dwyer ◽  
Langley Gace
2007 ◽  
Vol 23 (6) ◽  
pp. 661-667 ◽  
Author(s):  
P. Rapp ◽  
W. R. Ramírez ◽  
J. A. Rivera ◽  
M. Carlo ◽  
R. Luciano

Author(s):  
O̸sten Jensen ◽  
Anders Sunde Wroldsen ◽  
Pa˚l Furset Lader ◽  
Arne Fredheim ◽  
Mats Heide ◽  
...  

Aquaculture is the fastest growing food producing sector in the world. Considerable interest exists in developing open ocean aquaculture in response to a shortage of suitable, sheltered inshore locations. The harsh weather conditions experienced offshore lead to a focus on new structure concepts, remote monitoring and a higher degree of automation in order to keep the cost of structures and operations within an economically viable range. This paper proposes tensegrity structures in the design of flexible structures for offshore aquaculture. The finite element analysis program ABAQUS™ has been used to investigate stiffness properties and performance of tensegrity structures when subjected to various forced deformations and hydrodynamic load conditions. The suggested concept, the tensegrity beam, shows promising stiffness properties in tension, compression and bending, which are relevant for development of open ocean aquaculture construction for high energy environments. When designing a tensegrity beam, both pre-stress and spring stiffness should be considered to ensure the desired structural properties. A large strength to mass ratio and promising properties with respect to control of geometry, stiffness and vibration could make tensegrity an enabling technology for future developments.


2019 ◽  
Vol 116 ◽  
pp. 92-101 ◽  
Author(s):  
Yue Gao ◽  
Chunyang Zhou ◽  
Camille Gaulier ◽  
Arne Bratkic ◽  
Josep Galceran ◽  
...  

Minerals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1021
Author(s):  
Moei Yano ◽  
Kazutaka Yasukawa ◽  
Kentaro Nakamura ◽  
Minoru Ikehara ◽  
Yasuhiro Kato

Organic- and sulfide-rich sediments have formed in oxygen-depleted environments throughout Earth’s history. The fact that they are generally enriched in redox-sensitive elements reflects the sedimentary environment at the time of deposition. Although the modern ocean is well oxidized, oxygen depletion occurs in certain areas such as restricted basins and high-productivity zones. We measured bulk chemical compositions (major and trace elements, total organic carbon, and total sulfur) of organic- and sulfide-rich sediments collected from eight areas having oxygen-depleted water to discuss relationships between geochemical features and sedimentary environments. Major elemental compositions generally show mixtures of terrigenous detritus and biogenic carbonate. Some redox-sensitive elements might be controlled by organic matter content, whereas others could be contained in sulfide minerals in sediments. In particular, Mo and U show a characteristic trend; areas with higher Mo and U—at least partially owing to a depositional process called the “particulate shuttle”—generally correspond to regions influenced by the open ocean. In contrast, areas with lower Mo and U are more restricted marine environments. This suggests that the degree of Mo and U enrichment reflects the geography in terms of proximity to the open ocean, or the degree of the supply of these elements from the open ocean.


2020 ◽  
Vol 117 (36) ◽  
pp. 22281-22292 ◽  
Author(s):  
Mario Lebrato ◽  
Dieter Garbe-Schönberg ◽  
Marius N. Müller ◽  
Sonia Blanco-Ameijeiras ◽  
Richard A. Feely ◽  
...  

Seawater Mg:Ca and Sr:Ca ratios are biogeochemical parameters reflecting the Earth–ocean–atmosphere dynamic exchange of elements. The ratios’ dependence on the environment and organisms' biology facilitates their application in marine sciences. Here, we present a measured single-laboratory dataset, combined with previous data, to test the assumption of limited seawater Mg:Ca and Sr:Ca variability across marine environments globally. High variability was found in open-ocean upwelling and polar regions, shelves/neritic and river-influenced areas, where seawater Mg:Ca and Sr:Ca ratios range from ∼4.40 to 6.40 mmol:mol and ∼6.95 to 9.80 mmol:mol, respectively. Open-ocean seawater Mg:Ca is semiconservative (∼4.90 to 5.30 mol:mol), while Sr:Ca is more variable and nonconservative (∼7.70 to 8.80 mmol:mol); both ratios are nonconservative in coastal seas. Further, the Ca, Mg, and Sr elemental fluxes are connected to large total alkalinity deviations from International Association for the Physical Sciences of the Oceans (IAPSO) standard values. Because there is significant modern seawater Mg:Ca and Sr:Ca ratios variability across marine environments we cannot absolutely assume that fossil archives using taxa-specific proxies reflect true global seawater chemistry but rather taxa- and process-specific ecosystem variations, reflecting regional conditions. This variability could reconcile secular seawater Mg:Ca and Sr:Ca ratio reconstructions using different taxa and techniques by assuming an error of 1 to 1.50 mol:mol, and 1 to 1.90 mmol:mol, respectively. The modern ratios’ variability is similar to the reconstructed rise over 20 Ma (Neogene Period), nurturing the question of seminonconservative behavior of Ca, Mg, and Sr over modern Earth geological history with an overlooked environmental effect.


2010 ◽  
Vol 110 (6) ◽  
pp. 3850-3850 ◽  
Author(s):  
George Bizzigotti ◽  
Harry Castelly ◽  
Ahmed Hafez ◽  
Wade Smith ◽  
Mark Whitmire

Author(s):  
Yingbo Duan ◽  
Ningdong Xie ◽  
Zhao Wang ◽  
Zackary I. Johnson ◽  
Dana E. Hunt ◽  
...  

Fungi are an important, but understudied, group of heterotrophic microbes in marine environments. Traditionally, fungi in the coastal ocean were largely assumed to be derived from terrestrial inputs.


Sign in / Sign up

Export Citation Format

Share Document