oxygen depletion
Recently Published Documents


TOTAL DOCUMENTS

712
(FIVE YEARS 158)

H-INDEX

55
(FIVE YEARS 8)

Minerals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 75
Author(s):  
Meihua Yang ◽  
Yinhui Zuo ◽  
Xiaodong Fu ◽  
Lei Qiu ◽  
Wenzheng Li ◽  
...  

The quality of hydrocarbon source rocks is affected by the sedimentary paleoenvironment. A paleoenvironment with anoxia and a high paleoproductivity is beneficial to source rocks. The paleoenvironment of the Lower Ordovician Meitan Formation of the Sichuan Basin and its adjacent areas is lacking, restricting the oil and gas exploration of the Ordovician in the Sichuan Basin and its adjacent areas. In this paper, the content of major and trace elements of 50 samples was tested to clarify the paleoenvironment of the Meitan Formation. The paleoclimate, paleosalinity, paleoredox, and paleoproductivity during the deposition of the Meitan Formation were analyzed. The control effect of the paleoenvironment on the development of source rocks was clarified, and the favorable paleoenvironment for source rock development was pointed out. The results show that the paleoenvironment of the Meitan Formation has the following characteristics: humidity, brackish water, oxygen depletion, anoxia environment, and high paleoproductivity. These characteristics are conducive to the development of poor and moderate source rocks. The source rocks of the Meitan Formation were developed in the north, west, and south of the Sichuan Basin and its adjacent areas. The organic matter of the source rocks is mainly typed II1 kerogen, and the quality is evaluated as poor-medium source rocks having the potential of generating oil and gas. This study can provide fundamental parameters for the further exploration of Ordovician petroleum.


2022 ◽  
Vol 119 (2) ◽  
pp. e2113032119
Author(s):  
Anaïs Médieu ◽  
David Point ◽  
Takaaki Itai ◽  
Hélène Angot ◽  
Pearse J. Buchanan ◽  
...  

Pacific Ocean tuna is among the most-consumed seafood products but contains relatively high levels of the neurotoxin methylmercury. Limited observations suggest tuna mercury levels vary in space and time, yet the drivers are not well understood. Here, we map mercury concentrations in skipjack tuna across the Pacific Ocean and build generalized additive models to quantify the anthropogenic, ecological, and biogeochemical drivers. Skipjack mercury levels display a fivefold spatial gradient, with maximum concentrations in the northwest near Asia, intermediate values in the east, and the lowest levels in the west, southwest, and central Pacific. Large spatial differences can be explained by the depth of the seawater methylmercury peak near low-oxygen zones, leading to enhanced tuna mercury concentrations in regions where oxygen depletion is shallow. Despite this natural biogeochemical control, the mercury hotspot in tuna caught near Asia is explained by elevated atmospheric mercury concentrations and/or mercury river inputs to the coastal shelf. While we cannot ignore the legacy mercury contribution from other regions to the Pacific Ocean (e.g., North America and Europe), our results suggest that recent anthropogenic mercury release, which is currently largest in Asia, contributes directly to present-day human mercury exposure.


2022 ◽  
Vol 174 ◽  
pp. 113199
Author(s):  
Haiyan Zhang ◽  
Hao Wei ◽  
Liang Zhao ◽  
Huade Zhao ◽  
Shian Guo ◽  
...  

2021 ◽  
Vol 22 (48) ◽  
pp. 19-24
Author(s):  
Erik Jeppesen ◽  
Torben Moth Iversen ◽  
Tserenpil Sh

Global warming is expected to affect stream metabolism significantly; and higher temperatures may lead to higher respiration and thus higher risk of oxygen depletion. It is, therefore, crucial to obtain reliable data on the oxygen dynamics in the different stream compartments. Determination of sediment oxygen demand (SOD) is typically based on lab or field measurement using cores or benthic chamber in which the actual physical conditions in the streams are not possible to mimic perfectly. We compared SOD based on lab core incubations with SOD measured in situ in stream sections where the oxygen exchange between water and air was eliminated artificially. The in situ SOD increased with increasing oxygen concentrations and both the temperature and the oxygen dependency of SOD increased with increasing organic content in the surface sediment. The laboratory rates reached 17 - 83% of the rates obtained in situ. The percentages were especially low at low stream velocity, likely reflecting a pure imitation of the physical conditions near the sediment in the lab when the sediment organic content was high (at low velocity). Therefore, alternative methods, simulating the natural horizontal water flow, are needed to provide reliable information on SOD in streams.


MAUSAM ◽  
2021 ◽  
Vol 62 (4) ◽  
pp. 647-652
Author(s):  
A.D. SINGH ◽  
S. DAS ◽  
K. VERMA

High biological productivity combined with the poor ventilation produces severe oxygen depletion (hypoxia) in upper intermediate waters of the Arabian Sea. The naturally developed Arabian Sea oxygen minimum zone (OMZ) is one of the most pronounced low oxygen ocean environments known today. The OMZ impinges the Indian margin where oxygen concentration reaches values less than 0.05 ml/l leading denitrification. In recent studies, it has been observed that the OMZ strength has varied considerably in the past, in tune with the global climate change. But the effect of changes in natural mid-water hypoxic environment on the marine biota particularly of the eastern Arabian Sea is unknown. Here, we analyzed 30,000 yr record of temporal changes in two major groups of marine calcifying microfauna pteropods secreting aragonitic shells and foraminifera secreting calcitic shells in terms of abundance and diversity variations. This study will provide an insight into our understanding of potential impact of rising atmospheric CO2 on marine ecosystem.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Xiaoge Zhang ◽  
Lili Cheng ◽  
Yao Lu ◽  
Junjie Tang ◽  
Qijun Lv ◽  
...  

AbstractThe enzyme-mediated elevation of reactive oxygen species (ROS) at the tumor sites has become an emerging strategy for regulating intracellular redox status for anticancer treatment. Herein, we proposed a camouflaged bionic cascaded-enzyme nanoreactor based on Ti3C2 nanosheets for combined tumor enzyme dynamic therapy (EDT), phototherapy and deoxygenation-activated chemotherapy. Briefly, glucose oxidase (GOX) and chloroperoxidase (CPO) were chemically conjugated onto Ti3C2 nanosheets, where the deoxygenation-activated drug tirapazamine (TPZ) was also loaded, and the Ti3C2-GOX-CPO/TPZ (TGCT) was embedded into nanosized cancer cell-derived membrane vesicles with high-expressed CD47 (meTGCT). Due to biomimetic membrane camouflage and CD47 overexpression, meTGCT exhibited superior immune escape and homologous targeting capacities, which could effectively enhance the tumor preferential targeting and internalization. Once internalized into tumor cells, the cascade reaction of GOX and CPO could generate HClO for efficient EDT. Simultaneously, additional laser irradiation could accelerate the enzymic-catalytic reaction rate and increase the generation of singlet oxygen (1O2). Furthermore, local hypoxia environment with the oxygen depletion by EDT would activate deoxygenation-sensitive prodrug for additional chemotherapy. Consequently, meTGCT exhibits amplified synergistic therapeutic effects of tumor phototherapy, EDT and chemotherapy for efficient tumor inhibition. This intelligent cascaded-enzyme nanoreactor provides a promising approach to achieve concurrent and significant antitumor therapy.


2021 ◽  
Vol 118 (49) ◽  
pp. e2107034118
Author(s):  
Natascha Riedinger ◽  
Florian Scholz ◽  
Michelle L. Abshire ◽  
Matthias Zabel

During the last glacial interval, marine sediments recorded reduced current ventilation within the ocean interior below water depths of approximately >1,500 m [B. A. Hoogakker et al., Nat. Geosci. 8, 40–43 (2015)]. The degree of the associated oxygen depletion in the different ocean basins, however, is still poorly constrained. Here, we present sedimentary records of redox-sensitive metals from the southwest African margin. These records show evidence of continuous bottom water anoxia in the eastern South Atlantic during the last glaciation that led to enhanced carbon burial over a prolonged period of time. Our geochemical data indicate that upwelling-related productivity and the associated oxygen minimum zone in the eastern South Atlantic shifted far seaward during the last glacial period and only slowly retreated during deglaciation times. While increased productivity during the last ice age may have contributed to oxygen depletion in bottom waters, especially on the upper slope, slow-down of the Late Quaternary deep water circulation pattern [Rutberg et al., Nature 405, 935–938 (2000)] appears to be the ultimate driver of anoxic conditions in deep waters.


2021 ◽  
pp. 130-133
Author(s):  
Sally de França Lacerda Rolim ◽  
Claudio Gleidiston Lima da Silva ◽  
Fabian Danilo Unigarro Ramirez ◽  
Raul Cesar Fortaleza Pinheiro ◽  
Juliane dos Anjos de Paula ◽  
...  

Introduction: Manaus is an isolated city, localized in the hearth of the Amazonas rainforest, with two million inhabitants, a big territorial extension, distant from neighbor cities and next to the shores of Negro and Solimões rivers. The access overland is difficult, which obligates the oxygen tanks be transported by river or air.  This created and enormous logistical problem, added to the neglect of the Federal Government with the northern region of the country. Objective: Analyze what are the psychiatric repercussions on the explosion of in the lack of oxygen in Manaus, capital of the Amazonas, Brazil. Methods: Studies were identified using large-circulation international journals. Results: A scandal is happening. This situation is creating a grief community – particular grief became a common and public one – to the memory of an outrageous public health scandal. Therefore, dramatic stories of families of patients and the overwhelmed healthcare professionals shared on the social media and local press brings glimpses of the angst of this chaos. An entire wing of patients died caused by the oxygen depletion. Conclusion: This situation is causing a collective hysteria, taking healthcare workers and families of patients to desperation. Fear appears to be a consequence of the feeling of powerlessness. Anxiety levels are really elevated causing direct side effects to another mental health measures.


Radiation ◽  
2021 ◽  
Vol 1 (4) ◽  
pp. 290-304
Author(s):  
Bethany C. Rothwell ◽  
Matthew Lowe ◽  
Norman F. Kirkby ◽  
Michael J. Merchant ◽  
Amy L. Chadwick ◽  
...  

FLASH radiotherapy is a rapidly developing field which promises improved normal tissue protection compared to conventional irradiation and no compromise on tumour control. The transient hypoxic state induced by the depletion of oxygen at high dose rates provides one possible explanation. However, studies have mostly focused on uniform fields of dose and there is a lack of investigation into the spatial and temporal variation of dose from proton pencil-beam scanning (PBS). A model of oxygen reaction and diffusion in tissue has been extended to simulate proton PBS delivery and its impact on oxygen levels. This provides a tool to predict oxygen effects from various PBS treatments, and explore potential delivery strategies. Here we present a number of case applications to demonstrate the use of this tool for FLASH-related investigations. We show that levels of oxygen depletion could vary significantly across a large parameter space for PBS treatments, and highlight the need for in silico models such as this to aid in the development and optimisation of FLASH radiotherapy.


Sign in / Sign up

Export Citation Format

Share Document