Cloud detection in satellite images using multi-objective social spider optimization

2019 ◽  
Vol 79 ◽  
pp. 203-226 ◽  
Author(s):  
Rachana Gupta ◽  
Satyasai Jagannath Nanda ◽  
Urvashi Prakash Shukla
2021 ◽  
Author(s):  
Rachana Gupta ◽  
Satyasai Jagannath Nanda

Abstract An important difficulty with multi-objective algorithms to analyze many-objective optimization problems (MaOPs) is the visualization of large dimensional Pareto front. This article has alleviated this issue by utilizing objective reduction approach in order to remove non-conflicting objectives from original objective set. The present work proposed formulation of objective reduction technique with multi-objective social spider optimization (MOSSO) algorithm to provide decision regarding conflict objectives and generate approximate Pareto front of non-dominated solutions. A comprehensive analysis of objective reduction approach is carried out with existingmulti-objective methods on many-objective DTLZ and WFG test suite which highlight the superiority of proposed technique. Further, the performance of proposed approach is evaluated on satellite images to detect cloudy region against various types of earth’s surfaces. The performance of proposed approach is compared against existing benchmark many-objective algorithm, NSGA-III in order to evaluate the potential of proposed method in clustering application. It is observed that obtained clustering results using reduced objective set of MOSSO algorithm provides almost equivalent accuracy with results obtained using NSGA-III with many-objective set.


2021 ◽  
Vol 54 (3-4) ◽  
pp. 303-323
Author(s):  
Amjad J Humaidi ◽  
Huda T Najem ◽  
Ayad Q Al-Dujaili ◽  
Daniel A Pereira ◽  
Ibraheem Kasim Ibraheem ◽  
...  

This paper presents control design based on an Interval Type-2 Fuzzy Logic (IT2FL) for the trajectory tracking of 3-RRR (3-Revolute-Revolute-Revolute) planar parallel robot. The design of Type-1 Fuzzy Logic Controller (T1FLC) is also considered for the purpose of comparison with the IT2FLC in terms of robustness and trajectory tracking characteristics. The scaling factors in the output and input of T1FL and IT2FL controllers play a vital role in improving the performance of the closed-loop system. However, using trial-and-error procedure for tuning these design parameters is exhaustive and hence an optimization technique is applied to achieve their optimal values and to reach an improved performance. In this study, Social Spider Optimization (SSO) algorithm is proposed as a useful tool to tune the parameters of proportional-derivative (PD) versions of both IT2FLC and T1FLC. Two scenarios, based on two square desired trajectories (with and without disturbance), have been tested to evaluate the tracking performance and robustness characteristics of proposed controllers. The effectiveness of controllers have been verified via numerical simulations based on MATLAB/SIMULINK programming software, which showed the superior of IT2FLC in terms of robustness and tracking errors.


2021 ◽  
pp. 1-16
Author(s):  
Qianjin Wei ◽  
Chengxian Wang ◽  
Yimin Wen

Intelligent optimization algorithm combined with rough set theory to solve minimum attribute reduction (MAR) is time consuming due to repeated evaluations of the same position. The algorithm also finds in poor solution quality because individuals are not fully explored in space. This study proposed an algorithm based on quick extraction and multi-strategy social spider optimization (QSSOAR). First, a similarity constraint strategy was called to constrain the initial state of the population. In the iterative process, an adaptive opposition-based learning (AOBL) was used to enlarge the search space. To obtain a reduction with fewer attributes, the dynamic redundancy detection (DRD) strategy was applied to remove redundant attributes in the reduction result. Furthermore, the quick extraction strategy was introduced to avoid multiple repeated computations in this paper. By combining an array with key-value pairs, the corresponding value can be obtained by simple comparison. The proposed algorithm and four representative algorithms were compared on nine UCI datasets. The results show that the proposed algorithm performs well in reduction ability, running time, and convergence speed. Meanwhile, the results confirm the superiority of the algorithm in solving MAR.


Sign in / Sign up

Export Citation Format

Share Document