parallel robot
Recently Published Documents


TOTAL DOCUMENTS

1990
(FIVE YEARS 501)

H-INDEX

43
(FIVE YEARS 6)

2022 ◽  
Vol 170 ◽  
pp. 104721
Author(s):  
Chun-Yu Tsai ◽  
Chen-Pin Yu ◽  
Pin-Chun Yeh ◽  
Chao-Chieh Lan

2022 ◽  
Vol 169 ◽  
pp. 104646
Author(s):  
Hongpeng Chu ◽  
Bai Qi ◽  
Xuesong Qiu ◽  
Yulin Zhou

Robotica ◽  
2022 ◽  
pp. 1-17
Author(s):  
Huipu Zhang ◽  
Manxin Wang ◽  
Haibin Lai ◽  
Junpeng Huang

Abstract The trajectory-planning method for a novel 4-degree-of-freedom high-speed parallel robot is studied herein. The robot’s motion mechanism adopts RR(SS)2 as branch chains and has a single moving platform structure. Compared with a double moving platform structure, the proposed parallel robot has better acceleration and deceleration performance since the mass of its moving platform is lighter. An inverse kinematics model of the mechanism is established, and the corresponding relationship between the motion parameters of the end-moving platform and the active arm with three end-motion laws is obtained, followed by the optimization of the motion laws by considering the motion laws’ duration and stability. A Lamé curve is used to transition the right-angled part of the traditional gate trajectory, and the parameters of the Lamé curve are optimized to achieve the shortest movement time and minimum acceleration peak. A method for solving Lamé curve trajectory interpolation points based on deduplication optimization is proposed, and a grasping frequency experiment is conducted on a robot prototype. Results show that the grasping frequency of the optimized Lamé curve prototype can be increased to 147 times/min, and its work efficiency is 54.7% higher than that obtained using the traditional Adept gate-shaped trajectory.


Meccanica ◽  
2022 ◽  
Author(s):  
Faraz Abed Azad ◽  
Saeed Ansari Rad ◽  
Mohammad Reza Hairi Yazdi ◽  
Mehdi Tale Masouleh ◽  
Ahmad Kalhor

2021 ◽  
Vol 12 (1) ◽  
pp. 244
Author(s):  
Vu N. D. Kieu ◽  
Shyh-Chour Huang

Cable-driven parallel robots (CDPRs) have several advantages and have been widely used in many industrial fields, especially industrial applications that require high dynamics, high payload capacity, and a large workspace. In this study, a design model for a CDPR system was proposed, and kinematic and dynamic modeling of the system was performed. Experiments were carried out to identify the dynamic modulus of elastic cables based on the dynamic mechanical analysis (DMA) method. A modified kinematic equation considering cable nonlinear tension was developed to determine the optimal cable tension at each position of the end-effector, and the wrench-feasible workspace was analyzed at various motion accelerations. The simulation results show that the proposed CDPR system obtains a large workspace, and the overall workspace is satisfactory and unrestricted for moving ranges in directions limited by the X-axis and the Y-axis from −0.3 to 0.3 m and by the Z-axis from 0.1 to 0.7 m. The overall workspace was found to depend on the condition of acceleration as well as the moving ranges limited by the end-effector. With an increase in external acceleration, the cable tension distribution increased and reached a maximum in the case of 100 m/s2.


2021 ◽  
Vol 11 (24) ◽  
pp. 11849
Author(s):  
Ionut Daniel Geonea ◽  
Daniela Tarnita ◽  
Doina Pisla ◽  
Giuseppe Carbone ◽  
Alexandru Bolcu ◽  
...  

This paper presents studies on the dynamic analysis of the ASPIRE robot, which was designed for the medical recovery of brachial monoparesis. It starts from the virtual model of the existing version of the ASPIRE robot, which is analysed kinematically and dynamically by numerical simulations using the MSC.ADAMS software. For this purpose, this paper presents theoretical aspects regarding the kinematics and dynamics of the markers attached to the flexible bodies built in a specifically developed MSC.ADAMS model. Three simulation hypotheses are considered: (a) rigid kinematic elements without friction in couplings, (b) rigid kinematic elements with friction in couplings, and (c) kinematic elements as deformable solids with friction in couplings. Experimental results obtained by using the physical prototype of ASPIRE are presented. Results such as the connecting forces in the kinematic joints and the torques necessary to operate the ASPIRE robot modules have been obtained by dynamic simulation in MSC.ADAMS and compared with those determined experimentally. The comparison shows that the allure of the variation curve of the moment obtained by simulation is similar to that obtained experimentally. The difference between the maximum experimental value and that obtained by simulation is less than 1%. A finite element analysis (FEA) of the structurally optimized flexion/extension robot module is performed. The results demonstrate the operational safety of the ASPIRE robot, which is structurally capable of supporting the stresses to which it is subjected.


2021 ◽  
Author(s):  
Haiqiang Zhang ◽  
Qing Gao ◽  
Minghui Zhang ◽  
Yan'an Yao

2021 ◽  
Author(s):  
Haiqiang Zhang ◽  
Huanzhi Yuan ◽  
Changtao Yan ◽  
Yan'an Yao

2021 ◽  
pp. 1-23
Author(s):  
Jun Gao ◽  
Bin Zhou ◽  
Bin Zi ◽  
Sen Qian ◽  
Ping Zhao

Abstract Cable-driven parallel robots (CDPRs) are a kind of mechanism with large workspace, fast response, and low inertia. However, due to the existence of fixed pulleys, it is unavoidable to bring uncertain cable lengths and lead to pose errors of the end-effector (EE). The inverse kinematic model of a CDPR for picking up medicines is established by considering radii of fixed pulleys. The influence of radii of fixed pulleys on errors of cable lengths is explored. Error transfer model of the CPDR is constructed, and uncertain sources of cable lengths are analyzed. Based on evidence theory and error transfer model, an evidence theory-based uncertainty analysis method (ETUAM) is presented. The structural performance function for kinematic response is derived based on error transfer model. Belief and plausibility measures of joint focal elements under the given threshold are obtained. Kinematic error simulations show that errors of cable lengths become larger with the increase of radii of fixed pulleys. Compared with the vertex method and Monte Carlo method, numerical examples demonstrate the accuracy and efficiency of the ETUAM when it comes to the kinematic uncertainty analysis of the CDPR.


Sign in / Sign up

Export Citation Format

Share Document