Polarization pattern of low and mid-frequency magnetic pulsations in the polar cap: A comprehensive analysis at Terra Nova Bay (Antarctica)

2009 ◽  
Vol 43 (7) ◽  
pp. 1135-1142 ◽  
Author(s):  
U. Villante ◽  
P. Francia ◽  
M. Vellante ◽  
M. De Lauretis
2004 ◽  
Vol 22 (5) ◽  
pp. 1633-1648 ◽  
Author(s):  
L. Perrone ◽  
L. Alfonsi ◽  
V. Romano ◽  
G. de Franceschi

Abstract. Polar cap absorption (PCA) events recorded during November 2001 are investigated by observations of ionospheric absorption of a 30MHz riometer installed at Terra Nova Bay (Antarctica), and of solar proton flux, monitored by the NOAA-GOES8 satellite in geo-synchronous orbit. During this period three solar proton events (SPE) on 4, 19 and 23 November occurred. Two of these are among the dozen most intense events since 1954 and during the current solar cycle (23rd), the event of 4 November shows the greatest proton flux at energies >10MeV. Many factors contribute to the peak intensity of the two SPE biggest events, one is the Coronal Mass Ejection (CME) speed, other factors are the ambient population of SPE and the shock front due to the CME. During these events absorption peaks of several dB (~20dB) are observed at Terra Nova Bay, tens of minutes after the impact of fast halo CMEs on the geomagnetic field. Results of a cross-correlation analysis show that the first hour of absorption is mainly produced by 84–500MeV protons in the case of the 4 November event and by 15–44MeV protons for the event of 23 November, whereas in the entire event the contribution to the absorption is due chiefly to 4.2–82MeV (4 November) and by 4.2–14.5MeV (23 November). Good agreement is generally obtained between observed and calculated absorption by the empirical flux-absorption relationship for threshold energy E0=10MeV. From the residuals one can argue that other factors (e.g. X-ray increases and geomagnetic disturbances) can contribute to the ionospheric absorption.Key words. Ionosphere (Polar Ionosphere, Particle precipitation) – Solar physics (Flares and mass ejections)


2003 ◽  
Vol 21 (4) ◽  
pp. 923-932 ◽  
Author(s):  
S. Lepidi ◽  
L. Cafarella ◽  
P. Francia ◽  
A. Meloni ◽  
P. Palangio ◽  
...  

Abstract. We conduct an analysis of the geomagnetic field variations recorded at the new Antarctic station Dome C, located very close to the geomagnetic pole, which has been operating for approximately one month during the 1999–2000 campaign. We also perform a comparison with simultaneous measurements at the Italian Antarctic station Terra Nova Bay, in order to investigate the spatial extension of the phenomena observed at very high latitude. Our results show that between the two stations the daily variation is similar and the fluctuations with f ~ 1 mHz are coherent, provided that in both cases the comparison is made between geographically oriented components, suggesting that ionospheric currents related to the geographic position, more than field-aligned currents, are responsible for the lowest frequency variations; conversely, higher frequency (Pc5) fluctuations are substantially decoupled between the two stations. We also found that at Dome C the fluctuation power in the 0.55–6.7 mHz frequency band is well related with the solar wind speed during the whole day and that at Terra Nova Bay the correlation is also high, except around local geomagnetic noon, when the station approaches the polar cusp. These results indicate that the solar wind speed control of the geomagnetic field fluctuation power is very strict in the polar cap and less important close to the polar cusp.Key words. Magnetospheric physics (MHD waves and instabilities; Polar cap phenomena; Solar wind-magnetosphere interactions)


2021 ◽  
pp. 103510
Author(s):  
Alessandro Cau ◽  
Claudia Ennas ◽  
Davide Moccia ◽  
Olga Mangoni ◽  
Francesco Bolinesi ◽  
...  

2011 ◽  
Vol 52 (57) ◽  
pp. 291-300 ◽  
Author(s):  
Stefan Kern ◽  
Stefano Aliani

AbstractWintertime (April–September) area estimates of the Terra Nova Bay polynya (TNBP), Antarctica, based on satellite microwave radiometry are compared with in situ observations of water salinity, temperature and currents at a mooring in Terra Nova Bay in 1996 and 1997. In 1996, polynya area anomalies and associated anomalies in polynya ice production are significantly correlated with salinity anomalies at the mooring. Salinity anomalies lag area and/or ice production anomalies by about 3 days. Up to 50% of the variability in the salinity at the mooring position can be explained by area and/or ice production anomalies in the TNBP for April–September 1996. This value increases to about 70% when considering shorter periods like April–June or May–July, but reduces to 30% later, for example July–September, together with a slight increase in time lag. In 1997, correlations are smaller, less significant and occur at a different time lag. Analysis of ocean currents at the mooring suggests that in 1996 conditions were more favourable than in 1997 for observing the impact of descending plumes of salt-enriched water formed in the polynya during ice formation on the water masses at the mooring depth.


2004 ◽  
Vol 23 (2) ◽  
pp. 141-146 ◽  
Author(s):  
Maria De Domenico ◽  
Angelina Lo Giudice ◽  
Luigi Michaud ◽  
Marcello Saitta ◽  
Vivia Bruni

Polar Biology ◽  
1995 ◽  
Vol 15 (6) ◽  
pp. 393-400 ◽  
Author(s):  
M. Fabiano ◽  
R. Danovaro ◽  
E. Crisafi ◽  
R. La Ferla ◽  
P. Povero ◽  
...  

PLoS ONE ◽  
2016 ◽  
Vol 11 (4) ◽  
pp. e0153254 ◽  
Author(s):  
Roksana Majewska ◽  
Peter Convey ◽  
Mario De Stefano

1999 ◽  
Vol 11 (2) ◽  
pp. 261-264 ◽  
Author(s):  
Filippo Mangani ◽  
Michela Maione ◽  
Luciano Lattanzi

CCl3F (or CFC-11) and CCl2F2 (or CFC-12) were determined in air samples collected, during subsequent summer Antarctic campaigns, in different sampling sites in the Ross Sea Region. The samples were analysed by GC-ECD after enrichment. Data obtained since 1988–89 were plotted to observe the trend of CFCs atmospheric concentration levels. A decrease in the rate of increase of CFC-12 concentration was observed, whilst the concentration of CFC-11 was actually seen to be decreasing.


Polar Biology ◽  
2013 ◽  
Vol 36 (5) ◽  
pp. 731-753 ◽  
Author(s):  
Álvaro L. Peña Cantero ◽  
Ferdinando Boero ◽  
Stefano Piraino

Sign in / Sign up

Export Citation Format

Share Document