Guaranteed satisfaction of inequality state constraints in PDE-constrained optimization

Automatica ◽  
2020 ◽  
Vol 111 ◽  
pp. 108653 ◽  
Author(s):  
Eduardo S. Schultz ◽  
Ralf Hannemann-Tamás ◽  
Alexander Mitsos
Author(s):  
M. Hoffhues ◽  
W. Römisch ◽  
T. M. Surowiec

AbstractThe vast majority of stochastic optimization problems require the approximation of the underlying probability measure, e.g., by sampling or using observations. It is therefore crucial to understand the dependence of the optimal value and optimal solutions on these approximations as the sample size increases or more data becomes available. Due to the weak convergence properties of sequences of probability measures, there is no guarantee that these quantities will exhibit favorable asymptotic properties. We consider a class of infinite-dimensional stochastic optimization problems inspired by recent work on PDE-constrained optimization as well as functional data analysis. For this class of problems, we provide both qualitative and quantitative stability results on the optimal value and optimal solutions. In both cases, we make use of the method of probability metrics. The optimal values are shown to be Lipschitz continuous with respect to a minimal information metric and consequently, under further regularity assumptions, with respect to certain Fortet-Mourier and Wasserstein metrics. We prove that even in the most favorable setting, the solutions are at best Hölder continuous with respect to changes in the underlying measure. The theoretical results are tested in the context of Monte Carlo approximation for a numerical example involving PDE-constrained optimization under uncertainty.


2015 ◽  
Vol 37 (1) ◽  
pp. B1-B29 ◽  
Author(s):  
Martin Stoll ◽  
Tobias Breiten

Author(s):  
Seyed Fakoorian ◽  
Mahmoud Moosavi ◽  
Reza Izanloo ◽  
Vahid Azimi ◽  
Dan Simon

Non-Gaussian noise may degrade the performance of the Kalman filter because the Kalman filter uses only second-order statistical information, so it is not optimal in non-Gaussian noise environments. Also, many systems include equality or inequality state constraints that are not directly included in the system model, and thus are not incorporated in the Kalman filter. To address these combined issues, we propose a robust Kalman-type filter in the presence of non-Gaussian noise that uses information from state constraints. The proposed filter, called the maximum correntropy criterion constrained Kalman filter (MCC-CKF), uses a correntropy metric to quantify not only second-order information but also higher-order moments of the non-Gaussian process and measurement noise, and also enforces constraints on the state estimates. We analytically prove that our newly derived MCC-CKF is an unbiased estimator and has a smaller error covariance than the standard Kalman filter under certain conditions. Simulation results show the superiority of the MCC-CKF compared with other estimators when the system measurement is disturbed by non-Gaussian noise and when the states are constrained.


2002 ◽  
Author(s):  
BART G VAN BLOEMEN WAANDERS ◽  
ROSCOE A BARTLETT ◽  
KEVIN R LONG ◽  
PAUL T BOGGS ◽  
ANDREW G SALINGER

Sign in / Sign up

Export Citation Format

Share Document