ESAIM Mathematical Modelling and Numerical Analysis
Latest Publications


TOTAL DOCUMENTS

2005
(FIVE YEARS 307)

H-INDEX

70
(FIVE YEARS 6)

Published By Edp Sciences

1290-3841, 0764-583x

Author(s):  
Pascal Heid ◽  
Thomas P. Wihler

The classical Kacanov scheme for the solution of nonlinear variational problems can be interpreted as a fixed point iteration method that updates a given approximation by solving a linear problem in each step. Based on this observation, we introduce a modified Kacanov method, which allows for (adaptive) damping, and, thereby, to derive a new convergence analysis under more general assumptions and for a wider range of applications. For instance, in the specific context of quasilinear diffusion models, our new approach does no longer require a standard monotonicity condition on the nonlinear diffusion coefficient to hold. Moreover, we propose two different adaptive strategies for the practical selection of the damping parameters involved.


Author(s):  
Haitao Leng ◽  
Yanping Chen

In this paper, we investigate a hybridizable discontinuous Galerkin method for second order elliptic equations with Dirac measures. Under assumption that the domain is convex and the mesh is quasi-uniform, a priori error estimate for the error in $L^2$-norm is proved. By duality argument and Oswald interpolation, a posteriori error estimates for the errors in $L^2$-norm and $W^{1,p}$-seminorm are also obtained. Finally, numerical examples are provided to validate the theoretical analysis.


Author(s):  
Axel Målqvist ◽  
Barbara Verfürth

In this paper, we propose an offline-online strategy based on the Localized Orthogonal Decomposition (LOD) method for elliptic multiscale problems with randomly perturbed diffusion coefficient. We consider a periodic deterministic coefficient with local defects that occur with probability $p$. The offline phase pre-computes entries to global LOD stiffness matrices on a single reference element (exploiting the periodicity) for a selection of defect configurations. Given a sample of the perturbed diffusion the corresponding LOD stiffness matrix is then computed by taking linear combinations of the pre-computed entries, in the online phase. Our computable error estimates show that this yields a good approximation of the solution for small $p$, which is illustrated by extensive numerical experiments.  This makes the proposed technique attractive already for moderate sample sizes in a Monte Carlo simulation.


Author(s):  
Bo Gong

The modified Maxwell's Steklov eigenvalue problem is a new problem arising from the study of inverse electromagnetic scattering problems. In this paper, we investigate two finite element methods for this problem and perform the convergence analysis. Moreover,  the monotonic convergence of the discrete eigenvalues computed by one of the methods is analyzed.


Author(s):  
Xiaofeng Yang

We consider the numerical approximation of the binary fluid surfactant phase-field model confined in a Hele-Shaw cell, where the system includes two coupled Cahn-Hilliard equations and Darcy equations. We develop a fully-discrete finite element scheme with some desired characteristics, including linearity, second-order time accuracy, decoupling structure, and unconditional energy stability. The scheme is constructed by combining the projection method for the Darcy equation, the quadratization approach for the nonlinear energy potential, and a decoupling method of using a trivial ODE built upon the ``{zero-energy-contribution}" feature. The advantage of this scheme is that not only can all variables be calculated in a decoupled manner, but each equation has only constant coefficients at each time step. We strictly prove that the scheme satisfies the unconditional energy stability and give a detailed implementation process. Various numerical examples are further carried out to prove the effectiveness of the scheme, in which the benchmark Saffman-Taylor fingering instability problems in various flow regimes are simulated to verify the weakening effects of surfactant on surface tension.


Author(s):  
Jan Friedrich ◽  
Simone Goettlich ◽  
Maximilian Osztfalk

We present a network formulation for a traffic flow model with nonlocal velocity in the flux function. The modeling framework includes suitable coupling conditions at intersections to either ensure maximum flux or distribution parameters. In particular, we focus on 1-to-1, 2-to-1 and 1-to-2 junctions. Based on an upwind type numerical scheme, we prove the maximum principle and the existence of weak solutions on networks. We also investigate the limiting behavior of the proposed models when the nonlocal influence tends to infinity. Numerical examples show the difference between the proposed coupling conditions and a comparison to the Lighthill-Whitham-Richards network model.


Author(s):  
Yves Capdeboscq ◽  
Michael Vogelius

Abstract. A central ingredient of cloaking-by-mapping is the diffeomorphisn which transforms an annulus with a small hole into an annulus with a finite size hole, while being the identity on the outer boundary of the annulus. The resulting meta-material is anisotropic, which makes it difficult to manufacture. The problem of minimizing anisotropy among radial transformations has been studied in [4]. In this work, as in [4], we formulate the problem of minimizing anisotropy as an energy minimization problem. Our main goal is to provide strong evidence for the conjecture that for cloaks with circular boundaries, non-radial transformations do not lead to lower degree of anisotropy. In the final section, we consider cloaks with non-circular boundaries and show that in this case, non-radial cloaks may be advantageous, when it comes to minimizing anisotropy.


Author(s):  
Wasilij Barsukow ◽  
Christian Klingenberg

The acoustic equations derived as a linearization of the Euler equations are a valuable system for studies of multi-dimensional solutions. Additionally they possess a low Mach number limit analogous to that of the Euler equations. Aiming at understanding the behaviour of the multi-dimensional Godunov scheme in this limit, first the exact solution of the corresponding Cauchy problem in three spatial dimensions is derived. The appearance of logarithmic singularities in the exact solution of the 4-quadrant Riemann Problem in two dimensions is discussed. The solution formulae are then used to obtain the multidimensional Godunov finite volume scheme in two dimensions. It is shown to be superior to the dimensionally split upwind/Roe scheme concerning its domain of stability and ability to resolve multi-dimensional Riemann problems. It is shown experimentally and theoretically that despite taking into account multi-dimensional information it is, however, not able to resolve the low Mach number limit.


Author(s):  
Edouard Oudet ◽  
Francois Générau ◽  
Bozhidar Velichkov

We propose a new method for the numerical computation of the cut locus of a compact submanifold of R3 without boundary. This method is based on a convex variational problem with conic constraints, with proven convergence. We illustrate the versatility of our approach by the approximation of Voronoi cells on embedded surfaces of R3.


Author(s):  
Charles-Edouard Bréhier

We consider the long-time behavior of an explicit tamed exponential Euler scheme applied to a class of parabolic semilinear stochastic partial differential equations driven by additive noise, under a one-sided Lipschitz continuity condition. The setting encompasses nonlinearities with polynomial growth. First, we prove that moment bounds for the numerical scheme hold, with at most polynomial dependence with respect to the time horizon. Second, we apply this result to obtain error estimates, in the weak sense, in terms of the time-step size and of the time horizon, to quantify the error to approximate averages with respect to the invariant distribution of the continuous-time process. We justify the efficiency of using the explicit tamed exponential Euler scheme to approximate the invariant distribution, since the computational cost does not suffer from the at most polynomial growth of the moment bounds. To the best of our knowledge, this is the first result in the literature concerning the approximation of the invariant distribution for SPDEs with non-globally Lipschitz coefficients using an explicit tamed scheme.


Sign in / Sign up

Export Citation Format

Share Document