scholarly journals Molecular chaperone function of stress inducible Hsp70 is critical for intracellular multiplication of Toxoplasma gondii

2021 ◽  
Vol 1868 (2) ◽  
pp. 118898
Author(s):  
Pallabi Mitra ◽  
Abhijit S. Deshmukh ◽  
Chinmayee Choudhury
2013 ◽  
Vol 394 (8) ◽  
pp. 965-975 ◽  
Author(s):  
Michael Kovermann ◽  
Franz X. Schmid ◽  
Jochen Balbach

Abstract SlyD is a bacterial two-domain protein that functions as a molecular chaperone, a prolyl cis/trans isomerase, and a nickel-binding protein. This review summarizes recent findings about the molecular enzyme mechanism of SlyD. The chaperone function located in one domain of SlyD is involved in twin-arginine translocation and increases the catalytic efficiency of the prolyl cis/trans isomerase domain in protein folding by two orders of magnitude. The C-terminal tail of SlyD binds Ni2+ ions and supplies them for the maturation of [NiFe] hydrogenases. A combined biochemical and biophysical analysis revealed the molecular basis of the delicate interplay of the different domains of SlyD for optimal function.


2016 ◽  
Vol 21 (4) ◽  
pp. 707-715 ◽  
Author(s):  
Nur Athirah Yusof ◽  
Noor Haza Fazlin Hashim ◽  
Travis Beddoe ◽  
Nor Muhammad Mahadi ◽  
Rosli Md Illias ◽  
...  

2002 ◽  
Vol 368 (3) ◽  
pp. 865-874 ◽  
Author(s):  
Barry K. DERHAM ◽  
John J. HARDING

The role of α-crystallin as a molecular chaperone has been shown in many in vitro studies. In the present paper, we report on the chaperone function of α-crystallin within resealed erythrocyte ghosts. Eight enzymes were individually resealed within erythrocyte ghosts and assayed at zero time and at 24h. The ghost cell suspension was separated into soluble and membrane fractions. Five of the enzymes had significantly greater enzyme activity after 24h than the control within the soluble fractions. Fructation caused a decrease in enzyme activity (relative to the control). Resealing of α-crystallin within the ghost cell alongside the enzymes protected against inactivation by fructose within the soluble fraction.


2019 ◽  
Vol 20 (1) ◽  
pp. 132 ◽  
Author(s):  
Chang Ho Kang ◽  
Joung Hun Park ◽  
Eun Seon Lee ◽  
Seol Ki Paeng ◽  
Ho Byoung Chae ◽  
...  

In our previous study, we found that Ypt1p, a Rab family small GTPase protein, exhibits a stress-driven structural and functional switch from a GTPase to a molecular chaperone, and mediates thermo tolerance in Saccharomyces cerevisiae. In the current study, we focused on the temperature-sensitive ypt1-G80D mutant, and found that the mutant cells are highly sensitive to heat-shock, due to a deficiency in the chaperone function of Ypt1pG80D. This defect results from an inability of the protein to form high molecular weight polymers, even though it retains almost normal GTPase function. The heat-stress sensitivity of ypt1-G80D cells was partially recovered by treatment with 4-phenylbutyric acid, a chemical chaperone. These findings indicate that loss of the chaperone function of Ypt1pG80D underlies the heat sensitivity of ypt1-G80D cells. We also compared the proteomes of YPT1 (wild-type) and ypt1-G80D cells to investigate Ypt1p-controlled proteins under heat-stress conditions. Our findings suggest that Ypt1p controls an abundance of proteins involved in metabolism, protein synthesis, cellular energy generation, stress response, and DNA regulation. Finally, we suggest that Ypt1p essentially regulates fundamental cellular processes under heat-stress conditions by acting as a molecular chaperone.


1996 ◽  
Vol 110 (2) ◽  
pp. 419-424 ◽  
Author(s):  
J. A. Miernyk ◽  
G. T. Hayman

Sign in / Sign up

Export Citation Format

Share Document