scholarly journals Structure and orientation study of Ebola fusion peptide inserted in lipid membrane models

2014 ◽  
Vol 1838 (1) ◽  
pp. 117-126 ◽  
Author(s):  
Audrey Agopian ◽  
Sabine Castano
2017 ◽  
Vol 27 (17) ◽  
pp. 4190-4193 ◽  
Author(s):  
Ricardo Ferraz ◽  
Marina Pinheiro ◽  
Ana Gomes ◽  
Cátia Teixeira ◽  
Cristina Prudêncio ◽  
...  

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Michaela Sochorová ◽  
Klára Staňková ◽  
Petra Pullmannová ◽  
Andrej Kováčik ◽  
Jarmila Zbytovská ◽  
...  

Biomimetics ◽  
2020 ◽  
Vol 6 (1) ◽  
pp. 3
Author(s):  
Alessandra Luchini ◽  
Giuseppe Vitiello

Cell membranes are very complex biological systems including a large variety of lipids and proteins. Therefore, they are difficult to extract and directly investigate with biophysical methods. For many decades, the characterization of simpler biomimetic lipid membranes, which contain only a few lipid species, provided important physico-chemical information on the most abundant lipid species in cell membranes. These studies described physical and chemical properties that are most likely similar to those of real cell membranes. Indeed, biomimetic lipid membranes can be easily prepared in the lab and are compatible with multiple biophysical techniques. Lipid phase transitions, the bilayer structure, the impact of cholesterol on the structure and dynamics of lipid bilayers, and the selective recognition of target lipids by proteins, peptides, and drugs are all examples of the detailed information about cell membranes obtained by the investigation of biomimetic lipid membranes. This review focuses specifically on the advances that were achieved during the last decade in the field of biomimetic lipid membranes mimicking the mammalian plasma membrane. In particular, we provide a description of the most common types of lipid membrane models used for biophysical characterization, i.e., lipid membranes in solution and on surfaces, as well as recent examples of their applications for the investigation of protein-lipid and drug-lipid interactions. Altogether, promising directions for future developments of biomimetic lipid membranes are the further implementation of natural lipid mixtures for the development of more biologically relevant lipid membranes, as well as the development of sample preparation protocols that enable the incorporation of membrane proteins in the biomimetic lipid membranes.


2021 ◽  
Vol 118 (4) ◽  
pp. e2016037118
Author(s):  
Mattia I. Morandi ◽  
Monika Kluzek ◽  
Jean Wolff ◽  
André Schroder ◽  
Fabrice Thalmann ◽  
...  

Growth of plastic waste in the natural environment, and in particular in the oceans, has raised the accumulation of polystyrene and other polymeric species in eukyarotic cells to the level of a credible and systemic threat. Oligomers, the smallest products of polymer degradation or incomplete polymerization reactions, are the first species to leach out of macroscopic or nanoscopic plastic materials. However, the fundamental mechanisms of interaction between oligomers and polymers with the different cell components are yet to be elucidated. Simulations performed on lipid bilayers showed changes in membrane mechanical properties induced by polystyrene, but experimental results performed on cell membranes or on cell membrane models are still missing. We focus here on understanding how embedded styrene oligomers affect the phase behavior of model membranes using a combination of scattering, fluorescence, and calorimetric techniques. Our results show that styrene oligomers disrupt the phase behavior of lipid membranes, modifying the thermodynamics of the transition through a spatial modulation of lipid composition.


Membranes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 5
Author(s):  
Christian Fillafer ◽  
Yana S. Koll ◽  
Matthias F. Schneider

In cholinergic synapses, the neurotransmitter acetylcholine (ACh) is rapidly hydrolyzed by esterases to choline and acetic acid (AH). It is believed that this reaction serves the purpose of deactivating ACh once it has exerted its effect on a receptor protein (AChR). The protons liberated in this reaction, however, may by themselves excite the postsynaptic membrane. Herein, we investigated the response of cell membrane models made from phosphatidylcholine (PC), phosphatidylserine (PS) and phosphatidic acid (PA) to ACh in the presence and absence of acetylcholinesterase (AChE). Without a catalyst, there were no significant effects of ACh on the membrane state (lateral pressure change ≤0.5 mN/m). In contrast, strong responses were observed in membranes made from PS and PA when ACh was applied in presence of AChE (>5 mN/m). Control experiments demonstrated that this effect was due to the protonation of lipid headgroups, which is maximal at the pK (for PS: pKCOOH≈5.0; for PA: pKHPO4−≈8.5). These findings are physiologically relevant, because both of these lipids are present in postsynaptic membranes. Furthermore, we discussed evidence which suggests that AChR assembles a lipid-protein interface that is proton-sensitive in the vicinity of pH 7.5. Such a membrane could be excited by hydrolysis of micromolar amounts of ACh. Based on these results, we proposed that cholinergic transmission is due to postsynaptic membrane protonation. Our model will be falsified if cholinergic membranes do not respond to acidification.


2014 ◽  
Vol 106 (2) ◽  
pp. 295a
Author(s):  
Luis G.M. Basso ◽  
Tácio V.A. Fernandes ◽  
José F. Lima ◽  
Edson Crusca ◽  
Eduardo F. Vicente ◽  
...  

2011 ◽  
Vol 1808 (9) ◽  
pp. 2178-2188 ◽  
Author(s):  
Maria Jesús Sánchez-Martín ◽  
M. Antònia Busquets ◽  
Victoria Girona ◽  
Isabel Haro ◽  
M. Asunción Alsina ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document