Effect of glucose concentration and culture substrate on huvec viability in in vitro cultures: A literature review and own results

Author(s):  
Anna Ciechanowska ◽  
Ilona Gora ◽  
Stanislawa Sabalinska ◽  
Piotr Foltynski ◽  
Piotr Ladyzynski
1986 ◽  
Vol 109 (2) ◽  
pp. 181-185 ◽  
Author(s):  
A. Klein ◽  
A. W.-L. Chan ◽  
A. Malkin

ABSTRACT Mononuclear cell preparations are capable of metabolizing cortisol to three metabolites which lack the immunosuppressive effect of their precursor. In the present study we noted a linear correlation, up to a point, between glucose concentration and the rate of human mononuclear cell cortisol metabolism in vitro. The mechanism by which glucose exerts its effect was investigated further. We observed that: (1) the effect of glucose on mononuclear cell cortisol metabolism was not influenced by insulin; (2) NADPH and NADH enhanced cortisol metabolism by disrupted cells, irrespective of whether the homogenates were dialysed or not; (3) lactate and ATP inhibited mononuclear cell cortisol metabolism and (4) almost all the glucose used was converted to lactate. It is concluded that mononuclear cell cortisol metabolism can depend on both nucleotides. J. Endocr. (1986) 109, 181–185


Planta Medica ◽  
2012 ◽  
Vol 78 (11) ◽  
Author(s):  
K Sykłowska-Baranek ◽  
A Pietrosiuk ◽  
M Grech-Baran ◽  
M Bonfill ◽  
P Mistrzak

Planta Medica ◽  
2013 ◽  
Vol 79 (13) ◽  
Author(s):  
K Sykłowska-Baranek ◽  
A Pietrosiuk ◽  
K Graikou ◽  
H Damianakos ◽  
M Jeziorek ◽  
...  

1966 ◽  
Vol 51 (2) ◽  
pp. 193-202
Author(s):  
J. A. Antonioli ◽  
A. Vannotti

ABSTRACT 1. The metabolism of suspensions of circulating leucocytes has been studied after intramuscular injection of a dose of 50 mg/kg of a corticosteroid (cortisone acetate). The suspensions were incubated under aerobic conditions in the presence of a glucose concentration of 5.6 mm. Glucose consumption, lactate production, and variations in intracellular glycogen concentration were measured. After the administration of the corticosteroid, the anabolic processes of granulocyte metabolism were reversibly stimulated. Glucose consumption and lactate production increased 12 hours after the injection, but tended to normalize after 24 hours. The glycogen content of the granulocytes was enhanced, and glycogen synthesis during the course of the incubation was greatly stimulated. The action of the administered corticosteroid is more prolonged in females than in males. The injection of the corticosteroid caused metabolic modifications which resemble in their modulations and in their chronological development those found in circulating granulocytes of guinea-pigs suffering from sterile peritonitis. These results suggest, therefore, that, in the case of acute inflammation, the glucocorticosteroids may play an important role in the regulation of the metabolism of the blood leucocytes.


2008 ◽  
Vol 21 (2) ◽  
pp. 103-106 ◽  
Author(s):  
Barbara Sparzak ◽  
Mirosława Krauze-Baranowska ◽  
Loretta Pobłocka-Olech
Keyword(s):  

2020 ◽  
Vol 26 (24) ◽  
pp. 2817-2842
Author(s):  
Ewa Skała ◽  
Joanna Makowczyńska ◽  
Joanna Wieczfinska ◽  
Tomasz Kowalczyk ◽  
Przemysław Sitarek

Background: For a long time, the researchers have been looking for new efficient methods to enhance production and obtain valuable plant secondary metabolites, which would contribute to the protection of the natural environment through the preservation of various plant species, often rare and endangered. These possibilities offer plant in vitro cultures which can be performed under strictly-controlled conditions, regardless of the season or climate and environmental factors. Biotechnological methods are promising strategies for obtaining the valuable plant secondary metabolites with various classes of chemical compounds including caffeoylquinic acids (CQAs) and their derivatives. CQAs have been found in many plant species which are components in the daily diet and exhibit a wide spectrum of biological activities, including antioxidant, immunomodulatory, antihypertensive, analgesic, anti-inflammatory, hepato- and neuroprotective, anti-hyperglycemic, anticancer, antiviral and antimicrobial activities. They have also been found to offer protection against Alzheimer’s disease, and play a role in weight reduction and lipid metabolism control, as well as modulating the activity of glucose-6-phosphatase involved in glucose metabolism. Methods: This work presents the review of the recent advances in use in vitro cultures of various plant species for the alternative system to the production of CQAs and their derivatives. Production of the secondary metabolites in in vitro culture is usually performed with cell suspension or organ cultures, such as shoots and adventitious or transformed roots. To achieve high production of valuable secondary metabolites in in vitro cultures, the optimization of the culture condition is necessary with respect to both biomass accumulation and metabolite content. The optimization of the culture conditions can be achieved by choosing the type of medium, growth regulators or growth conditions, selection of high-productivity lines or culture period, supplementation of the culture medium with precursors or elicitor treatments. Cultivation for large-scale in bioreactors and genetic engineering: Agrobacterium rhizogenes transformation and expression improvement of transcriptional factor or genes involved in the secondary metabolite production pathway are also efficient strategies for enhancement of the valuable secondary metabolites. Results: Many studies have been reported to obtain highly productive plant in vitro cultures with respect to CQAs. Among these valuable secondary metabolites, the most abundant compound accumulated in in vitro cultures was 5-CQA (chlorogenic acid). Highly productive cultures with respect to this phenolic acid were Leonurus sibiricus AtPAP1 transgenic roots, Lonicera macranthoides and Eucomia ulmoides cell suspension cultures which accumulated above 20 mg g-1 DW 5-CQA. It is known that di- and triCQAs are less common in plants than monoCQAs, but it was also possible to obtain them by biotechnological methods. Conclusion: The results indicate that the various in vitro cultures of different plant species can be a profitable approach for the production of CQAs. In particular, an efficient production of these valuable compounds is possible by Lonicera macranthoides and Eucomia ulmoides cell suspension cultures, Leonurus sibiricus transformed roots and AtPAP1 transgenic roots, Echinacea angustifolia adventitious shoots, Rhaponticum carthamoides transformed plants, Lavandula viridis shoots, Sausera involucrata cell suspension and Cichorium intybus transformed roots.


Sign in / Sign up

Export Citation Format

Share Document