scholarly journals Endothelial Glycocalyx Layer Properties and Its Ability to Limit Leukocyte Adhesion

2020 ◽  
Vol 118 (7) ◽  
pp. 1564-1575 ◽  
Author(s):  
Luis F. Delgadillo ◽  
Graham A. Marsh ◽  
Richard E. Waugh
Author(s):  
Luis F. Delgadillo ◽  
Elena B. Lomakina ◽  
Julia Kuebel ◽  
Richard E. Waugh

Leukocyte adhesion to the endothelium is an important early step in the initiation and progression of sepsis. The endothelial glycocalyx layer (EGL) has been implicated in neutrophil adhesion and barrier dysfunction, but studies in this area are few. In this report we examine the hypothesis that damage to the structure of the EGL caused by inflammation leads to increased leukocyte adhesion and endothelial barrier dysfunction. We used human umbilical vein endothelial cells (HUVECs) enzymatically treated to remove the EGL components hyaluronic acid (HA) and heparan sulfate (HS) as a model for EGL damage. Using atomic force microscopy, we show reductions in EGL thickness after removal of either HA or HS individually, but the largest decrease, comparable to TNF-a treatment, was observed when both HA and HS were removed. Interestingly, removal of HS or HA individually did not affect neutrophil adhesion significantly, but removal of both constituents resulted in increased neutrophil adhesion. To test EGL contributions to endothelial barrier properties, we measured trans-endothelial electrical resistance (TEER) and diffusion of fluorescently labeled dextran (10 kDa MW) across the monolayer. Removal of EGL components decreased TEER, but had an insignificant effect on dextran diffusion rates. The reduction in TEER suggests that disruption of the EGL may predispose endothelial cells to increased rates of fluid leakage. These data support the view that damage to the EGL during inflammation has significant effects on the accessibility of adhesion molecules, likely facilitates leukocyte adhesion, and may also contribute to increased rates of fluid transport into tissues.


2020 ◽  
Vol 22 (1) ◽  
pp. 176
Author(s):  
Toshiaki Iba ◽  
Jerrold H. Levy ◽  
Koichiro Aihara ◽  
Katsuhiko Kadota ◽  
Hiroshi Tanaka ◽  
...  

(1) Background: The endothelial glycocalyx is a primary target during the early phase of sepsis. We previously reported a newly developed recombinant non-fucosylated antithrombin has protective effects in vitro. We further evaluated the effects of this recombinant antithrombin on the glycocalyx damage in an animal model of sepsis. (2) Methods: Following endotoxin injection, in Wistar rats, circulating levels of hyaluronan, syndecan-1 and other biomarkers were evaluated in low-dose or high-dose recombinant antithrombin-treated animals and a control group (n = 7 per group). Leukocyte adhesion and blood flow were evaluated with intravital microscopy. The glycocalyx was also examined using side-stream dark-field imaging. (3) Results: The activation of coagulation was inhibited by recombinant antithrombin, leukocyte adhesion was significantly decreased, and flow was better maintained in the high-dose group (both p < 0.05). Circulating levels of syndecan-1 (p < 0.01, high-dose group) and hyaluronan (p < 0.05, low-dose group; p < 0.01, high-dose group) were significantly reduced by recombinant antithrombin treatment. Increases in lactate and decreases in albumin levels were significantly attenuated in the high-dose group (p < 0.05, respectively). The glycocalyx thickness was reduced over time in control animals, but the derangement was attenuated and microvascular perfusion was better maintained in the high-dose group recombinant antithrombin group (p < 0.05). (4) Conclusions: Recombinant antithrombin maintained vascular integrity and the microcirculation by preserving the glycocalyx in this sepsis model, effects that were more prominent with high-dose therapy.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
JiaWan Wang ◽  
AnShi Wu ◽  
Yan Wu

Background. Shedding of the endothelial glycocalyx layer (EGL) is known to occur during major surgery, but its degradation associated with minimally invasive video-assisted thoracoscopy (VATS) remains unclear. We investigated if serum biomarkers of EGL disruption were elevated during VATS lobectomy, and whether the urinary trypsin inhibitor (UTI) ulinastatin exerted a protective effect during this procedure.Materials and Methods. Sixty ASA II-III lung cancer patients undergoing elective VATS lobectomy were divided equally into UTI and control groups. UTI group patients received intravenous UTI during surgery. Serum levels of syndecan-1 and heparan sulfate were examined before (T0) and at the end of surgery (T1). Serum albumin and hemoglobin were measured before surgery (BOD) and on the first postoperative day (POD1).Results. In control group, syndecan-1 levels were significantly elevated at T1 compared with T0 (3.77±3.15versus4.28±3.30,P=0.022⁎) and increased even more significantly in patients whose surgery lasted >3 h (3.28±2.84versus4.31±3.39,P=0.003⁎⁎). Serum albumin levels on POD1 were significantly lower in control group compared with UTI group (32.63±4.57versus35.76±2.99,P=0.031⁎).Conclusion. EGL degradation occurs following VATS lobectomy. UTI can alleviate this shedding, thus helping preserve normal vascular permeability.Trail Registration. This trial is registered withChiCTR-IOC-17010416(January 13, 2017).


2016 ◽  
Vol 798 ◽  
pp. 812-852 ◽  
Author(s):  
T. C. Lee ◽  
D. S. Long ◽  
R. J. Clarke

The endothelial glycocalyx layer (EGL) is a macromolecular layer that lines the inner surface of blood vessels. It is believed to serve a number of physiological functions in the microvasculature, including protection of the vessel walls from potentially harmful levels of fluid shear, as a molecular sieve that acts to regulate transendothelial mass transport, and as a transducer of mechanical stress from the vessel lumen. To best fulfil some of its roles, it has been suggested that the EGL redistributes, so that it is thickest at the cell–cell junctions. It has also been suggested that the majority of mechanotransduction occurs through the solid phase of the EGL, rather than via its fluid phase. The difficulties associated with measuring the distribution of the EGL in vivo make these hypotheses difficult to confirm experimentally. Consequently, to gauge the impact of EGL redistribution from a theoretical standpoint, we compute the flow through a porous-lined microvessel, the endothelial surface of which has been informed by confocal microscopy images of a postcapillary venule. Following earlier studies, we model the poroelastohydrodynamics of the EGL using biphasic mixture theory, taking advantage of a recently developed boundary integral representation of these equations to solve the coupled poroelastohydrodynamics using the boundary element method. However, the low permeabilities of the EGL mean that viscous effects are confined to thin layers, thereby also enabling an asymptotic treatment of the dynamics in this limit. In this asymptotic regime, we also consider a two-layer Stokes flow model for the lumen flow to approximate the effect of red blood cells within the lumen. We demonstrate that redistribution of the EGL can have a substantial impact upon microvessel haemodynamics. We also confirm that the bulk of the mechanical stress is indeed carried through the solid phase of the EGL.


Open Biology ◽  
2017 ◽  
Vol 7 (1) ◽  
pp. 160286 ◽  
Author(s):  
Douglas P. Dyer ◽  
Elisa Migliorini ◽  
Catherina L. Salanga ◽  
Dhruv Thakar ◽  
Tracy M. Handel ◽  
...  

Chemokines control the migration of cells in normal physiological processes and in the context of disease such as inflammation, autoimmunity and cancer. Two major interactions are involved: (i) binding of chemokines to chemokine receptors, which activates the cellular machinery required for movement; and (ii) binding of chemokines to glycosaminoglycans (GAGs), which facilitates the organization of chemokines into haptotactic gradients that direct cell movement. Chemokines can bind and activate their receptors as monomers; however, the ability to oligomerize is critical for the function of many chemokines in vivo . Chemokine oligomerization is thought to enhance their affinity for GAGs, and here we show that it significantly affects the ability of chemokines to accumulate on and be retained by heparan sulfate (HS). We also demonstrate that several chemokines differentially rigidify and cross-link HS, thereby affecting HS rigidity and mobility, and that HS cross-linking is significantly enhanced by chemokine oligomerization. These findings suggest that chemokine–GAG interactions may play more diverse biological roles than the traditional paradigms of physical immobilization and establishment of chemokine gradients; we hypothesize that they may promote receptor-independent events such as physical re-organization of the endothelial glycocalyx and extracellular matrix, as well as signalling through proteoglycans to facilitate leukocyte adhesion and transmigration.


Sign in / Sign up

Export Citation Format

Share Document