Critical Care
Latest Publications


TOTAL DOCUMENTS

14843
(FIVE YEARS 1594)

H-INDEX

139
(FIVE YEARS 34)

Published By Springer (Biomed Central Ltd.)

1875-7081, 1364-8535

Critical Care ◽  
2022 ◽  
Vol 26 (1) ◽  
Author(s):  
Haijun Huang ◽  
Chenxia Wu ◽  
Qinkang Shen ◽  
Yixin Fang ◽  
Hua Xu

Abstract Background The ability of end-tidal carbon dioxide (ΔEtCO2) for predicting fluid responsiveness has been extensively studied with conflicting results. This meta-analysis aimed to explore the value of ΔEtCO2 for predicting fluid responsiveness during the passive leg raising (PLR) test in patients with mechanical ventilation. Methods PubMed, Embase, and Cochrane Central Register of Controlled Trials were searched up to November 2021. The diagnostic odds ratio (DOR), sensitivity, and specificity were calculated. The summary receiver operating characteristic curve was estimated, and the area under the curve (AUROC) was calculated. Q test and I2 statistics were used for study heterogeneity and publication bias was assessed by Deeks’ funnel plot asymmetry test. We performed meta-regression analysis for heterogeneity exploration and sensitivity analysis for the publication bias. Results Overall, six studies including 298 patients were included in this review, of whom 149 (50%) were fluid responsive. The cutoff values of ΔEtCO2 in four studies was 5%, one was 5.8% and the other one was an absolute increase 2 mmHg. Heterogeneity between studies was assessed with an overall Q = 4.098, I2 = 51%, and P = 0.064. The pooled sensitivity and specificity for the overall population were 0.79 (95% CI 0.72–0.85) and 0.90 (95% CI 0.77–0.96), respectively. The DOR was 35 (95% CI 12–107). The pooled AUROC was 0.81 (95% CI 0.77–0.84). On meta-regression analysis, the number of patients was sources of heterogeneity. The sensitivity analysis showed that the pooled DOR ranged from 21 to 140 and the pooled AUC ranged from 0.92 to 0.96 when one study was omitted. Conclusions Though the limited number of studies included and study heterogeneity, our meta-analysis confirmed that the ΔEtCO2 performed moderately in predicting fluid responsiveness during the PLR test in patients with mechanical ventilation.


Critical Care ◽  
2022 ◽  
Vol 26 (1) ◽  
Author(s):  
Vanessa Catenacci ◽  
Fatima Sheikh ◽  
Kush Patel ◽  
Alison E. Fox-Robichaud

Abstract Background Sepsis, the dysregulated host response to infection, triggers abnormal pro-coagulant and pro-inflammatory host responses. Limitations in early disease intervention highlight the need for effective diagnostic and prognostic biomarkers. Protein C’s role as an anticoagulant and anti-inflammatory molecule makes it an appealing target for sepsis biomarker studies. This meta-analysis aims to assess the diagnostic and prognostic value of protein C (PC) as a biomarker for adult sepsis. Methods We searched MEDLINE, PubMed, EMBASE, CINAHL and Cochrane Library from database inception to September 12, 2021. We included prospective observational studies of (1) adult patients (> 17) with sepsis or suspicion of sepsis that; (2) measured PC levels with 24 h of study admission with; and (3) the goal of examining PC as a diagnostic or prognostic biomarker. Two authors screened articles and conducted risk of bias (RoB) assessment, using the Quality in Prognosis Studies (QUIPS) and the Quality Assessment in Diagnostic Studies-2 (QUADAS-2) tools. If sufficient data were available, meta-analysis was conducted to estimate the standardized mean difference (SMD) between patient populations. Results Twelve studies were included, and 8 were synthesized for meta-analysis. Pooled analysis demonstrated moderate certainty of evidence that PC levels were less reduced in sepsis survivors compared to non-survivors (6 studies, 741 patients, SMD = 0.52, 95% CI 0.24–0.81, p = 0.0003, I2 = 55%), and low certainty of evidence that PC levels were less reduced in septic patients without disseminated intravascular coagulation (DIC) compared to those with DIC (3 studies, 644 patients, SMD = 0.97, 95% CI 0.62–1.32, p < 0.00001, I2 = 67%). PC could not be evaluated as a diagnostic tool due to heterogeneous control populations between studies. Conclusion and relevance Our review demonstrates that PC levels were significantly higher in sepsis survivors compared to non-survivors and patients with sepsis but not disseminated intravascular coagulation (DIC). Our evaluation is limited by high RoB in included studies and poor reporting of the sensitivity and specificity of PC as a sepsis biomarker. Future studies are needed to determine the sensitivity and specificity of PC to identify its clinical significance as a biomarker for early sepsis recognition. Trial Registration PROSPERO registration number: CRD42021229786. The study protocol was published in BMJ Open.


Critical Care ◽  
2022 ◽  
Vol 26 (1) ◽  
Author(s):  
Yunjoo Im ◽  
Danbee Kang ◽  
Ryoung-Eun Ko ◽  
Yeon Joo Lee ◽  
Sung Yoon Lim ◽  
...  

Abstract Background Timely administration of antibiotics is one of the most important interventions in reducing mortality in sepsis. However, administering antibiotics within a strict time threshold in all patients suspected with sepsis will require huge amount of effort and resources and may increase the risk of unintentional exposure to broad-spectrum antibiotics in patients without infection with its consequences. Thus, controversy still exists on whether clinicians should target different time-to-antibiotics thresholds for patients with sepsis versus septic shock. Methods This study analyzed prospectively collected data from an ongoing multicenter cohort of patients with sepsis identified in the emergency department. Adjusted odds ratios (ORs) were compared for in-hospital mortality of patients who had received antibiotics within 1 h to that of those who did not. Spline regression models were used to assess the association of time-to-antibiotics as continuous variables and increasing risk of in-hospital mortality. The differences in the association between time-to-antibiotics and in-hospital mortality were assessed according to the presence of septic shock. Results Overall, 3035 patients were included in the analysis. Among them, 601 (19.8%) presented with septic shock, and 774 (25.5%) died. The adjusted OR for in-hospital mortality of patients whose time-to-antibiotics was within 1 h was 0.78 (95% confidence interval [CI] 0.61–0.99; p = 0.046). The adjusted OR for in-hospital mortality was 0.66 (95% CI 0.44–0.99; p = 0.049) and statistically significant in patients with septic shock, whereas it was 0.85 (95% CI 0.64–1.15; p = 0.300) in patients with sepsis but without shock. Among patients who received antibiotics within 3 h, those with septic shock showed 35% (p = 0.042) increased risk of mortality for every 1-h delay in antibiotics, but no such trend was observed in patients without shock. Conclusion Timely administration of antibiotics improved outcomes in patients with septic shock; however, the association between early antibiotic administration and outcome was not as clear in patients with sepsis without shock.


Critical Care ◽  
2022 ◽  
Vol 26 (1) ◽  
Author(s):  
Wolfgang H. Hartl ◽  
Philipp Kopper ◽  
Andreas Bender ◽  
Fabian Scheipl ◽  
Andrew G. Day ◽  
...  

Abstract Background Proteins are an essential part of medical nutrition therapy in critically ill patients. Guidelines almost universally recommend a high protein intake without robust evidence supporting its use. Methods Using a large international database, we modelled associations between the hazard rate of in-hospital death and live hospital discharge (competing risks) and three categories of protein intake (low: < 0.8 g/kg per day, standard: 0.8–1.2 g/kg per day, high: > 1.2 g/kg per day) during the first 11 days after ICU admission (acute phase). Time-varying cause-specific hazard ratios (HR) were calculated from piece-wise exponential additive mixed models. We used the estimated model to compare five different hypothetical protein diets (an exclusively low protein diet, a standard protein diet administered early (day 1 to 4) or late (day 5 to 11) after ICU admission, and an early or late high protein diet). Results Of 21,100 critically ill patients in the database, 16,489 fulfilled inclusion criteria for the analysis. By day 60, 11,360 (68.9%) patients had been discharged from hospital, 4,192 patients (25.4%) had died in hospital, and 937 patients (5.7%) were still hospitalized. Median daily low protein intake was 0.49 g/kg [IQR 0.27–0.66], standard intake 0.99 g/kg [IQR 0.89– 1.09], and high intake 1.41 g/kg [IQR 1.29–1.60]. In comparison with an exclusively low protein diet, a late standard protein diet was associated with a lower hazard of in-hospital death: minimum 0.75 (95% CI 0.64, 0.87), and a higher hazard of live hospital discharge: maximum HR 1.98 (95% CI 1.72, 2.28). Results on hospital discharge, however, were qualitatively changed by a sensitivity analysis. There was no evidence that an early standard or a high protein intake during the acute phase was associated with a further improvement of outcome. Conclusions Provision of a standard protein intake during the late acute phase may improve outcome compared to an exclusively low protein diet. In unselected critically ill patients, clinical outcome may not be improved by a high protein intake during the acute phase. Study registration ID number ISRCTN17829198


Critical Care ◽  
2022 ◽  
Vol 26 (1) ◽  
Author(s):  
Marta Martín-Fernández ◽  
María Heredia-Rodríguez ◽  
Irene González-Jiménez ◽  
Mario Lorenzo-López ◽  
Estefanía Gómez-Pesquera ◽  
...  

Abstract Background Despite growing interest in treatment strategies that limit oxygen exposure in ICU patients, no studies have compared conservative oxygen with standard oxygen in postsurgical patients with sepsis/septic shock, although there are indications that it may improve outcomes. It has been proven that high partial pressure of oxygen in arterial blood (PaO2) reduces the rate of surgical-wound infections and mortality in patients under major surgery. The aim of this study is to examine whether PaO2 is associated with risk of death in adult patients with sepsis/septic shock after major surgery. Methods We performed a secondary analysis of a prospective observational study in 454 patients who underwent major surgery admitted into a single ICU. Patients were stratified in two groups whether they had hyperoxemia, defined as PaO2 > 100 mmHg (n = 216), or PaO2 ≤ 100 mmHg (n = 238) at the day of sepsis/septic shock onset according to SEPSIS-3 criteria maintained during 48 h. Primary end-point was 90-day mortality after diagnosis of sepsis. Secondary endpoints were ICU length of stay and time to extubation. Results In patients with PaO2 ≤ 100 mmHg, we found prolonged mechanical ventilation (2 [8] vs. 1 [4] days, p < 0.001), higher ICU stay (8 [13] vs. 5 [9] days, p < 0.001), higher organ dysfunction as assessed by SOFA score (9 [3] vs. 7 [5], p < 0.001), higher prevalence of septic shock (200/238, 84.0% vs 145/216) 67.1%, p < 0.001), and higher 90-day mortality (37.0% [88] vs. 25.5% [55], p = 0.008). Hyperoxemia was associated with higher probability of 90-day survival in a multivariate analysis (OR 0.61, 95%CI: 0.39–0.95, p = 0.029), independent of age, chronic renal failure, procalcitonin levels, and APACHE II score > 19. These findings were confirmed when patients with severe hypoxemia at the time of study inclusion were excluded. Conclusions Oxygenation with a PaO2 above 100 mmHg was independently associated with lower 90-day mortality, shorter ICU stay and intubation time in critically ill postsurgical sepsis/septic shock patients. Our findings open a new venue for designing clinical trials to evaluate the boundaries of PaO2 in postsurgical patients with severe infections.


Critical Care ◽  
2022 ◽  
Vol 26 (1) ◽  
Author(s):  
Jessica González ◽  
Iván D. Benítez ◽  
David de Gonzalo-Calvo ◽  
Gerard Torres ◽  
Jordi de Batlle ◽  
...  

Abstract Question We evaluated whether the time between first respiratory support and intubation of patients receiving invasive mechanical ventilation (IMV) due to COVID-19 was associated with mortality or pulmonary sequelae. Materials and methods Prospective cohort of critical COVID-19 patients on IMV. Patients were classified as early intubation if they were intubated within the first 48 h from the first respiratory support or delayed intubation if they were intubated later. Surviving patients were evaluated after hospital discharge. Results We included 205 patients (140 with early IMV and 65 with delayed IMV). The median [p25;p75] age was 63 [56.0; 70.0] years, and 74.1% were male. The survival analysis showed a significant increase in the risk of mortality in the delayed group with an adjusted hazard ratio (HR) of 2.45 (95% CI 1.29–4.65). The continuous predictor time to IMV showed a nonlinear association with the risk of in-hospital mortality. A multivariate mortality model showed that delay of IMV was a factor associated with mortality (HR of 2.40; 95% CI 1.42–4.1). During follow-up, patients in the delayed group showed a worse DLCO (mean difference of − 10.77 (95% CI − 18.40 to − 3.15), with a greater number of affected lobes (+ 1.51 [95% CI 0.89–2.13]) and a greater TSS (+ 4.35 [95% CI 2.41–6.27]) in the chest CT scan. Conclusions Among critically ill patients with COVID-19 who required IMV, the delay in intubation from the first respiratory support was associated with an increase in hospital mortality and worse pulmonary sequelae during follow-up.


Critical Care ◽  
2022 ◽  
Vol 26 (1) ◽  
Author(s):  
Alexander Supady ◽  
Paul M. Biever ◽  
Dawid L. Staudacher ◽  
Tobias Wengenmayer

Critical Care ◽  
2022 ◽  
Vol 26 (1) ◽  
Author(s):  
Mariano Esperatti ◽  
Marina Busico ◽  
Nora Angélica Fuentes ◽  
Adrian Gallardo ◽  
Javier Osatnik ◽  
...  

Abstract Background In patients with COVID-19-related acute respiratory failure (ARF), awake prone positioning (AW-PP) reduces the need for intubation in patients treated with high-flow nasal oxygen (HFNO). However, the effects of different exposure times on clinical outcomes remain unclear. We evaluated the effect of AW-PP on the risk of endotracheal intubation and in-hospital mortality in patients with COVID-19-related ARF treated with HFNO and analyzed the effects of different exposure times to AW-PP. Methods This multicenter prospective cohort study in six ICUs of 6 centers in Argentine consecutively included patients > 18 years of age with confirmed COVID-19-related ARF requiring HFNO from June 2020 to January 2021. In the primary analysis, the main exposure was awake prone positioning for at least 6 h/day, compared to non-prone positioning (NON-PP). In the sensitivity analysis, exposure was based on the number of hours receiving AW-PP. Inverse probability weighting–propensity score (IPW-PS) was used to adjust the conditional probability of treatment assignment. The primary outcome was endotracheal intubation (ETI); and the secondary outcome was hospital mortality. Results During the study period, 580 patients were screened and 335 were included; 187 (56%) tolerated AW-PP for [median (p25–75)] 12 (9–16) h/day and 148 (44%) served as controls. The IPW–propensity analysis showed standardized differences < 0.1 in all the variables assessed. After adjusting for other confounders, the OR (95% CI) for ETI in the AW-PP group was 0.36 (0.2–0.7), with a progressive reduction in OR as the exposure to AW-PP increased. The adjusted OR (95% CI) for hospital mortality in the AW-PP group ≥ 6 h/day was 0.47 (0.19–1.31). The exposure to prone positioning ≥ 8 h/d resulted in a further reduction in OR [0.37 (0.17–0.8)]. Conclusion In the study population, AW-PP for ≥ 6 h/day reduced the risk of endotracheal intubation, and exposure ≥ 8 h/d reduced the risk of hospital mortality.


Critical Care ◽  
2022 ◽  
Vol 26 (1) ◽  
Author(s):  
Samuel M. Brown ◽  
Victor D. Dinglas ◽  
Narjes Akhlaghi ◽  
Somnath Bose ◽  
Valerie Banner-Goodspeed ◽  
...  

Abstract Introduction Survivors of acute respiratory failure (ARF) commonly experience long-lasting physical, cognitive, and/or mental health impairments. Unmet medication needs occurring immediately after hospital discharge may have an important effect on subsequent recovery. Methods and analysis In this multicenter prospective cohort study, we enrolled ARF survivors who were discharged directly home from their acute care hospitalization. The primary exposure was unmet medication needs. The primary outcome was hospital readmission or death within 3 months after discharge. We performed a propensity score analysis, using inverse probability weighting for the primary exposure, to evaluate the exposure–outcome association, with an a priori sample size of 200 ARF survivors. Results We enrolled 200 ARF survivors, of whom 107 (53%) were female and 77 (39%) were people of color. Median (IQR) age was 55 (43–66) years, APACHE II score 20 (15–26) points, and hospital length of stay 14 (9–21) days. Of the 200 participants, 195 (98%) were in the analytic cohort. One hundred fourteen (57%) patients had at least one unmet medication need; the proportion of medication needs that were unmet was 6% (0–15%). Fifty-six (29%) patients were readmitted or died by 3 months; 10 (5%) died within 3 months. Unmet needs were not associated (risk ratio 1.25; 95% CI 0.75–2.1) with hospital readmission or death, although a higher proportion of unmet needs may have been associated with increased hospital readmission (risk ratio 1.7; 95% CI 0.96–3.1) and decreased mortality (risk ratio 0.13; 95% CI 0.02–0.99). Discussion Unmet medication needs are common among survivors of acute respiratory failure shortly after discharge home. The association of unmet medication needs with 3-month readmission and mortality is complex and requires additional investigation to inform clinical trials of interventions to reduce unmet medication needs. Study registration number: NCT03738774. The study was prospectively registered before enrollment of the first patient.


Critical Care ◽  
2022 ◽  
Vol 26 (1) ◽  
Author(s):  
Patrick M. Honore ◽  
Sebastien Redant ◽  
Thierry Preseau ◽  
Sofie Moorthamers ◽  
Keitiane Kaefer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document